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Abstract

This thesis addresses problems from a geodynamic perspective. Numerical methods

and analytical techniques are used to obtain insight in the mechanics of geodynamic

processes.

The interaction between petrology and tectonics, for example, is studied in a model

of sedimentary basin subsidence. It is demonstrated that metamorphic phase transi-

tions, which affect rock density, have a first order effect on the basin subsidence. In

particular mantle phase transitions reduce the amount of synrift-subsidence, in agree-

ment with observations.

The mechanics of a model that allows for erosion, compressional and density-driven

deformation are studied in detail. The concept of mechanical phase diagrams is em-

ployed to study the key parameters controlling the dynamics of the system. In the

model, up to eight deformation modes exist, as a function of two non-dimensional pa-

rameters. Good agreement is demonstrated between analytical and numerical results.

Mechanical phase diagrams are also applied to shear-localization in visco-elasto-

plastic materials. Localization is initiated through shear-heating-induced increase of

temperature, whereas it may be inhibited by thermal diffusion. Results are derived for

0D, 1D and 2D settings with constant stress and constant velocity boundary conditions.

Up to six deformation modes exist as a function of four nondimensional parameters.

Scaling laws, derived for the various deformation modes demonstrate that the model

may be relevant to natural conditions.

The Rayleigh-Taylor (RT) instability is formed if a fluid of low density underlies a

fluid of higher density. The deformation of the fluid interface is investigated analyt-

ical and numerically in both two and three dimensions. It is shown that the purely

three-dimensional normal modes amplify faster then 2D modes. The superposition of

different normal modes may result in relatively complex patterns. The 2D-3D transi-

tion is studied for various boundary conditions. The limits of existing linear stability

theory are examined and a new finite-amplitude theory is proposed, which yields a

better description of finite-amplitude structures growing from thin source layers. Re-

versibility issues of the RT-instability are discussed for different initial structures.

The tools used throughout this thesis include analytical techniques (thick- and thin-



plate methods), and numerical methods (finite-difference, finite-element and hybrid

finite-difference/spectral methods) that have been specifically tailored to the investi-

gated problems. Progress has been made in the incorporation of solid-like (elasto-

plastic) and fluid-like (viscous) behavior in a single computational framework.



Zusammenfassung

Diese Dissertation befasst sich mit Problemen aus dem Gebiet der Geodynamik.

Numerische und analytische Methoden werden angewandt, um Einsicht in die Mechanik

verschiedener geodynamischer Prozesse zu bekommen.

Die Interaktion zwischen Petrologie und Tektonik, zum Beispiel mit Hilfe eines

Modelles eines Sedimentbeckens studiert. Es wird gezeigt, dass metamorphe Phasen-

übergänge, die die Dichte eines Gesteines beeinflussen, einen grossen Effekt auf die Sub-

sidenz des Beckens haben. Insbesondere die Phasenübergänge im Erdmantel führen zu

einer starken Verringerung der Synriftsubsidenz, was mit Beobachtungen übereinstimmt.

Die Mechanik eines Modelles, welches die Effekte von Erosion, kompressiver De-

formation und dichtegetriebener Deformation berücksichtigt, wird detailliert studiert.

Das Konzept mechanischer Phasendiagramme wird angewandt, um die wichtigsten

Parameter des dynamischen Systems zu charakterisieren. Im Model existieren acht

Deformationsarten, die eine Funktion von zwei dimensionslosen Parametern sind. Eine

gute Übereinstimmung zwischen analytischen und numerischen Resultaten wurde fest-

gestellt.

Mechanische Phasendiagramme werden auch für die Scherlokalisierung in visko-

elasto-plastischen Materialien berechnet. In diesem Modell wird die Lokalisierung

durch Scherung initiiert, die einen Anstieg der Temperatur zur Folge hat. Gleichzeitig

kann die Lokalisierung durch den Effekt von thermischer Diffusion verhindert wer-

den. Resultate sind gültig für den 0D, 1D und 2D Fall, für sowohl eine konstante

Geschwindigkeit als auch eine konstante Spannung als Randbedingung. Bis zu sechs

Deformationsarten existieren als Funktion von vier nichtdimensionalen Parametern.

Skalierungsgesetzmässigkeiten, hergeleitet für die verschiedenen Deformationsarten,

zeigen, dass das Model für natürliche Bedingungen relevant ist.

Eine Rayleigh-Taylor (RT) Instabilität tritt auf, wenn eine Flüssigkeit niedriger

Dichte unter einer Flüssigkeit höherer Dichte liegt. Die Deformation der Grenzlinie

zwischen den beiden Flüssigkeiten wird sowohl analytisch als auch numerisch für zwei

und drei Dimensionen untersucht. Es wird gezeigt, dass reine dreidimensionale Per-

turbationen (”normal modes”) schneller wachsen als zweidimensionale Perturbationen.

Eine Überlagerung verschiedener Perturbationen resultiert in komplexen dreidimen-



sionalen Strukturen. Der Übergang von 2D zu 3D Strukturen wird für verschieden-

ste Randbedingungen studiert. Die Grenzen existierender linearer Theorien werden

aufgezeigt und eine neue finite-amplituden Theorie wird vorgeschlagen, welche das Ver-

halten von Strukturen, die aus dünnen Grenzschichten wachsen, besser beschriebt. Die

Reversibilität der RT-Instabilität wird für verschiedene Anfangsbedingungen aufgezeigt.

Die Methoden, die in dieser Dissertation benutzt werden, umfassen analytische

Methoden (Theorie der dünnen und dicken Platten), und numerische Methoden (Finite-

Differenzen-, Finite-Elemente und Spektral-Methoden) die speziell für diese Arbeit

entwickelt und angepasst wurden. Fortschritte wurden auch bei der Implementierung

von festem (elasto-plastisch) und flüssigem (viskoses) Materialverhalten in ein einziges

numerisches Programm erzielt.



Chapter 1

Introduction

This thesis addresses geodynamical problems. What does geodynamics mean? Geo

(Earth) stands for geology, for example sedimentological, petrological and structural

observations. Geology, initially a descriptive science, becomes an increasingly quan-

titative science. Dynamics stands for time evolution, mechanics, physics, rheology.

Dynamics tries to constrain the observations and interpretations that geologists have

made. Such constraints cannot be stated without a thorough mechanical understand-

ing of geological processes. Laboratory experiments on the rheology of rocks have

demonstrated that diverse behaviors exist, ranging from brittle failure at low tempera-

tures to (nonlinear) creep-like behavior at higher temperatures. Knowing the rheology

of rocks is essential in understanding deformation, but is only one part of geodynam-

ics. The other part involves understanding of mechanical processes that are somewhat

different than problems solved in the engineering community (e.g. turbulence in gas,

or car-crash tests), since the timescales and the amount of strain involved in many

geodynamic processes (e.g. mantle convection, mountain building) are much larger.

Geological processes evolve slowly and have negligible inertial terms, which results in

specific governing equations. Thus, results obtained by the engineering community are

not directly applicable to geodynamic settings, and advances in this direction have to

be made by the geodynamic community itself. Different approaches have been em-

ployed, including (1) scaled laboratory experiments, (2) analytical techniques and (3)

numerical experiments. Laboratory experiments employ analogue materials like honey,

silicon putty or sand, to simulate flow of the mantle and crust, thereby taking care

that key nondimensional parameters of the experiments are identical to natural values.
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Whereas much insight has been obtained by these experiments, it is difficult to incorpo-

rate processes like phase transitions or temperature-dependent rheologies. Analytical

techniques can be used to derive solutions to the governing mechanical equations, but

are typically limited to small deformations and/or relatively simple rheologies. Numer-

ical experiments do not suffer from these drawbacks but have the disadvantage of being

computational expensive, especially in three dimensions. Moreover, it is sometimes not

easy to understand results of numerical experiments in terms of the controlling param-

eters, since typically many different (nonlinear) processes are incorporated and active

simultaneously in these models. It is clear, for example, that erosion is active during

the formation of a mountain belt. At the same time, an orogeny would not exist with-

out horizontal compression, and gravity may also influence its formation. But what

are the respective roles of gravity and compression? What is the effect of erosion? In

this thesis such questions are addressed by a combination of numerical (FEM, finite

difference, spectral) and analytical (thin-plate, thick-plate) modelling techniques.

1.1 Methods

Continuum mechanics is employed throughout this work. The governing equations are

solved analytically, if possible, and numerically. The analytical solutions, together with

an appropriate non-dimensionalization, allow the identification of controlling param-

eters. In many cases, mechanical ’phase diagrams’ are derived as a function of few

non-dimensional parameters that characterize the dynamics of a given setup. In ad-

dition, the effects of realistic densities, known from petrological studies, on large-scale

geodynamic processes are studied.

Several numerical codes have been developed specifically for this work. One of the

novel aspects of these codes is that they allow to couple solid-like (elasto-plastic) behav-

ior with creep-like (viscous) behavior in a single computational domain. The codes also

allow relatively large deformations, and are tuned for geodynamic (slowly-moving) pro-

cesses. The first code is a mixed Eulerian spectral/finite difference technique, whereas

the second code is a finite element method (FEM). The rheology employed in both cases

is temperature-dependent visco-elasto-plastic with non-associated Mohr-Coulomb plas-

ticity and Maxwell visco-elasticity. The reason to develop several codes is that each

is tuned for different problems. The spectral method, for example, is very fast in
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cases where the initial setup is periodic and/or has limited lateral variation in effective

viscosity (e.g. folding, diapirism). Some disadvantages are that lateral variations in

viscosity require special treatment (see Chapter 8) and that non-standard boundary

conditions or model domains are more difficult to implement. The FEM method has

the advantage of being very general and easy to modify, but the disadvantage of being

relatively slow, especially in 3D.

An advantage of combining the different numerical techniques with analytical meth-

ods, is that this gives additional crosschecks for each of the methods.

1.2 Thesis structure

Chapter 2 - The effect of mineral phase transitions on sedimentary basin

subsidence and uplift.

Chapter 2 focusses on vertical movements in sedimentary basins. The pure-shear

stretching model [McKenzie, 1978] predicts that the amount of subsidence rifting is

equal than, or larger than the amount of post-rift subsidence. This is at odd with

observations that indicate that the thickness of both syn-rift and post-rift sediments

are approximately equal. Moreover, syn-rift uplift is frequently observed, which cannot

be explained with the pure-shear stretching model (for reasonable parameter values).

In this chapter, it is shown that this mismatch may be caused by the fact that the

pure-shear model assumes density to be a function of temperature only. Metamorphic

petrology, however, showed that density is a function of the mineral assemblage of the

rocks. We have computed realistic density models for a range of crustal and mantle

mineralogies from thermodynamic data by free energy minimization. Incorporation of

these density structures into the pure-shear stretching model results both in syn-rift

uplift and a reduction of total syn-rift subsidence compared to post-rift subsidence.

Chapter 3 - The interplay between folding, diapirism and erosion in com-

pressional settings

The interaction between erosion, gravity and compression is studied for a relatively

simple, two-layer setup. This model allows for two main modes of vertically amplified

structures: folding (compression-controlled) and diapirism (gravity-controlled). Previ-

ous workers have typically focussed on one of the two modes, letting aside the other
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one (for example ignoring the effect of gravity). By using an analytical perturbation

technique, it has been possible to derive solutions for several end-member cases. By

matching these solutions, it could be demonstrated that two non-dimensional param-

eters exist, which control the dynamics of the system. A mechanical ’phase-diagram’

has been derived, which exhibits eight folding-diapirism modes, five of which are ge-

ologically relevant. A drawback of these analytical methods, however, is that they

are limited to small strain. Therefore, numerical simulations have been performed to

study how analytical results are applicable to later stages. They demonstrated that

the various deformation modes detected with the analytical method result in distinct

late-stage patterns.

Chapter 4 - Initiation of localized shear in visco-elasto-plastic rocks

This chapter systematically studies the initiation of localized shear in a visco-elasto-

plastic rheology. Shear localization is induced by shear-heating. Mechanical phase

diagrams are derived in 0D, 1D and 2D settings under both constant velocity and

constant stress boundary conditions. Up to six deformation modes exist as a function

of four non-dimensional parameters. Localization may be inhibited by thermal dif-

fusion. The derived scaling-laws give a first-order explanation of previously observed

shear-localization effects in numerical models which employed more complex rheolo-

gies. Examples of shear-localization at the lithospheric scale are presented. The simple

rheological model presented here is thus an attractive candidate for incorporation in

next-generation global convection models that study plate-like behavior.

Chapter 5 - Forward and reverse modelling of the three-dimensional viscous

Rayleigh-Taylor instability

The Rayleigh-Taylor (RT) instability arises when a low density fluid underlies a higher

density fluid. Here, the RT instability is studied in three-dimensions using a newly

developed spectral/finite difference code. Detailed comparisons are made between 3D

and previous 2D results. Numerically computed growth rate spectra show a wavelength

selection towards 3D perturbations at finite amplitudes. Systematic computations are

performed to study the survival of initially imposed 2D structures during later stages.

Their survival depends on the initial 2D amplitude and wavelength and the amplitude

of background noise. It is also shown that reverse (backward) modelling is capable of
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restoring the initial geometry as long as overhangs are not developed.

Chapter 6 - The transition from exponential to buoyancy-controlled di-

apirism.

During the initiation stages of the RT instability, the growth of its amplitude versus

time is approximately exponential. During later stages, however, the growth becomes

linear, and the exponential theory looses its validity. A modification of the exponential

theory is proposed to link the initial with the late stages. The improvement is based on

the fact that the late-stage vertical amplification is determined by the Stokes velocity

of a rising sphere. The effective radius of this sphere is computable from the initial

wavelength of the perturbation. The transition between exponential and linear growth

only occurs for initially thin layers. The new theory is valid for aspect ratios of 3D

dominant modes of up to 10. Purely 2D modes rise slower then 3D modes, but aspect

ratios in excess of 100 are required for a 3D perturbation to behave effectively like a

2D structure.

Chapter 7 - 3D diapiric pattern formation.

A detailed study is made to understand the influence of boundary and initial conditions

on the geometry and on the pattern of 2D and 3D RT instabilities. Whereas no-slip,

free-slip and no-stress boundary conditions all result in similarly looking, mushroom-

shaped geometries, a fast-erosion boundary condition results in chimney-like structures,

both in 2D and 3D cases. The spacing of evolved structures is predicted to a large

extent by linear stability theory, which gives a characteristic spacing (the dominant

wavelength) in 2D cases. In the general 3D case, however, an infinite number of dom-

inant modes exist. Linear superposition of these dominant modes results in complex

patterns ranging from circular to curved and elongated in map view. Wall-like struc-

tures are initiated in a 3D setup if an initial step-like perturbation is present at the

interface of the two fluids. Natural salt-dome patterns range from approximately regu-

larly spaced finger-like diapirs to wall-like diapirs. The results obtained in this chapter

show that the spacing of finger-like salt pillows and domes may be consistent with a

RT-model. At the same time, wall-like diapirs cannot initiate spontaneously in this

model. An initial 2D perturbation of the salt-overburden interface is required, which

could, for example represent brittle faulting of the overburden.
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Chapter 8 - A finite difference/spectral method for large deformation mod-

elling of visco-elasto-plastic geomaterials

This chapter describes a spectral/finite-difference numerical method that can deal with

a Maxwell viscoelastic rheology combined with Mohr-Coulomb plasticity in an Eulerian

framework. The method is essentially a further-development of the method presented

in Schmalholz et al. [2001] and allows thermomechanical simulations of geodynamic

processes. Benchmark studies are presented, testing various aspects of the code.

Appendix A - Aftershocks driven by a high pressure CO2 source at depth

An unusual strong series of aftershocks followed a magnitude 5.7 earthquake in 1997 in

the Assisi-region (Italy). Models of elastic stress transfer fail to explain this normal-

faulting sequence. We show that this sequence may have been driven by a fluid pressure

pulse generated from the co-seismic release of a known deep source of trapped CO2.

The flow of CO2 is governed by a Darcy-type model, in which the permeability has a

non-linear dependency on the effective stress (i.e. the high-pressure fluid generates its

own path). There is a correlation between the high pressure front and the aftershock

hypocenters over a two week period. The 10-20 MPa triggering amplitude of the

pressure pulse overwhelms the typical 0.1-0.2 MPa range from stress changes in the

usual stress triggering arguments.

1.3 Final remarks

The models presented here give insight into various geodynamic processes. Any model,

whether numerical, analytical, or analogue has the drawback of being a simplification of

nature. Ultimately, whether the simplifications are justified can only be tested through

close collaboration between the different fields of geosciences. From my perspective,

the duty of modelers is to provide a thorough understanding of processes that happen

in their highly idealized world. If possible, scaling laws with predictive power should

be derived. The examples presented in this thesis realize this philosophy through

combined application of analytical and numerical methods.
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Chapter 2

The effect of mineral phase
transitions on sedimentary basin
subsidence and uplift.1

Abstract Metamorphic phase transitions influence rock density, which is a major

parameter affecting lithosphere dynamics and basin subsidence. To assess the impor-

tance of these effects we have computed realistic density models for a range of crustal

and mantle mineralogies from thermodynamic data by free energy minimization. These

density distributions are incorporated into one- and two-dimensional kinematic mod-

els of basin subsidence. The results demonstrate that, compared to models in which

density is solely temperature dependent, phase transitions have the effect of increasing

post-rift subsidence while decreasing syn-rift subsidence. Discrepancies between our

model results and those obtained with the conventional uniform stretching models can

be up to 95 % for reasonable parameter choices. The models also predict up to 1 km of

syn-rift uplift as a consequence of phase transitions. Mantle phase transitions, in par-

ticular the spinel-garnet-plagioclase-lherzolite transitions are responsible for the most

significant effects on subsidence. Differences in mantle composition are shown to be a

second-order effect. Parameterized density models are derived for crustal and mantle

rocks, which reproduce the main effects of the phase transitions on subsidence.

1This work has been submitted for publication in Earth and Planetary Science Letters (Kaus,
B.J.P, Connolly, J.A.D., Podladchikov, Y.Y., Schmalholz, S.M., in review)
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2.1 Introduction

One of the most widely used models for subsidence of sedimentary basins formed by

extension is the uniform stretching model (USM), which assumes that subsidence is

caused by crustal thinning and by thermal cooling [McKenzie, 1978]. An important

feature of the USM formulation is that lithospheric density is assumed to depend only

on temperature, a model we designate as the temperature-dependent-density (TDD)

formulation. The TDD formulation has been applied successfully in many situations,

but it cannot explain certain common observations [e.g. Ziegler and Cloetingh, 2004,

and reference therein]. The most prominent difficulty is that many basins have rela-

tively thin syn-rift sediments, but thick post-rift sediments [Walker et al., 1997, Royden

and Keen, 1980, Beaumont et al., 1982, Sclater et al., 1980, Spadini et al., 1997]. To

explain the thickness of the post-rift sediments with the TDD formulation, extensive

stretching is required; this is at odds with the small thickness of syn-rift sediments.

The widespread phenomenon of basin uplift during overall extension of the lithosphere

[e.g. in the Vøring Basin; see Ren et al., 2003] creates a second difficulty for the TDD

formulation. A thin crust is required (< 1/7 of the lithospheric thickness) to explain

this phenomenon. Such crustal thicknesses contradict geophysical observations sug-

gesting crustal thickness is typically 30-40 km. Uplift usually occurs preceding rifting

or after a finite amount of extension. An additional problem with the TDD formula-

tion is posed by the fact that many basins have a phase of accelerated subsidence rates

during the post-rift thermal subsidence phase [Middleton, 1980, Hamdani et al., 1994].

The TDD formulation predicts that the subsidence rate decreases with time t as t−0.5,

and thus this can only be explained with non-thermal mechanisms [Podladchikov et al.,

1994, Hamdani et al., 1994, 1991]. To rectify these problems refinements of the TDD

formulation have been proposed that include depth-dependent stretching [Royden and

Keen, 1980, Beaumont et al., 1982], active rifting [Huismans et al., 2001], interaction

between lithospheric rheology and erosion [Burov and Poliakov, 2001] or mineral phase

transitions [e.g. Podladchikov et al., 1994, Yamasaki and Nakada, 1997, O’Connell and

Wasserburg, 1972, Artyushkov et al., 2000]. Here we focus on a refinement of this

model in which lithospheric density is adjusted to account for phase transitions that

occur in response to the geodynamic cycle.

Most of the models that have been proposed to explain shortcomings of the TDD
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formulation involve complexity or rely on parameters such as the lithospheric rheology,

which are poorly constrained. However the conditions and consequences of the meta-

morphic phase transitions that occur during lithospheric thinning are constrained from

field observations, experimental studies and thermodynamic theory. We exploit the

latter to construct a realistic lithospheric density model and to assess its consequences

for basin subsidence.

That metamorphic phase transitions influence basin subsidence has been recognized

for several decades. It has been suggested in Lovering [1958] and Kennedy [1959]

that crustal phase transitions around the Moho could affect uplift and subsidence.

Numerical and analytical studies that concentrated on phase transitions in crustal rocks

[Hamdani et al., 1991, 1994, Middleton, 1980, Neugebauer and Spohn, 1978, Spohn and

Neugebauer, 1978, Artyushkov et al., 2000], in mantle rocks [Podladchikov et al., 1994,

Yamasaki and Nakada, 1997], or in both [Petrini et al., 2001] demonstrated that phase

transitions cause syn-rift uplift preceding rifting, greater post-rift subsidence then in

the TDD formulation and periods of accelerated subsidence. Lobkovsky and coworkers

[Lobkovsky et al., 1993, 1996] proposed a model in which partial melt, emplaced and

solidified in lenses below the rift center, is transformed into eclogite causing accelerated

post-rift subsidence. Their model requires a nearly impermeable Moho and predicts

that eclogite lenses remain present after the completion of extension, which may be

seismically detectable.

The applicability of most of the models described above is limited, since they typ-

ically only consider a single discontinuous phase transition. Natural rocks have con-

tinuous reactions. Many of these reactions have only small density effects, but the

cummulative effect of these reactions can be significant. The optimal approach is to

consider all the reactions that may occur in the lithosphere. Such an analysis in combi-

nation with basin subsidence was done by Petrini et. al. [Petrini et al., 2001], who used

a realistic density distribution for both mantle and crustal rocks and demonstrated that

phase changes lead to more post-rift subsidence and less syn-rift subsidence. However,

they restricted their analysis to small stretching factors (δ = 1.5) and did not detect

syn-rift uplift as observed in Podladchikov et al. [1994] and Yamasaki and Nakada

[1997].

Here we follow the same approach by coupling realistic density distributions with a

kinematic subsidence model. To estimate the sensitivity of the results to the chemical
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composition of the lithosphere, we compute density models for a range of different

mantle and crustal compositions. The results are then compared with the TDD for-

mulation and parameterized density maps are derived that reproduce results of ’real’

density maps up to reasonable accuracy and thus yield additional insight into the way

phase transitions influence subsidence.

2.2 Representative phase diagrams and density dis-

tributions for crustal and upper mantle rocks.

Phase assemblages at the pressure (P ) and temperature (T ) conditions of interest were

computed using free-energy minimization [Connolly, 1990, Connolly and Petrini, 2002].

The minimization program requires thermodynamic data for end-member phase com-

positions together with solution models to compute relative proportions, compositions

and densities of the stable mineralogy.

The bulk compositions considered here are listed in Table 2.1. Taylor and McLen-

nan Taylor and McLennan [1985] proposed a model for the continental crust consisting

of 75% Archean crust and 25% andesitic crust, to represent the different Archean and

post-Archean crustal growth processes. A second crustal model assumes the crust

to have a granodioritic composition [Wedepohl, 1995]. Three different mantle mod-

els have been employed. These are variations of the pyrolite model originally pro-

posed by Ringwood [Ringwood, 1962] and represents the mean chemical composition

of the upper mantle. The compositions that are used for calculations range from an

incompatible-element-enriched mantle (Hawaiian Pyrolite) to a normal upper mantle

(MOR-pyrolite), to a depleted mantle (Tinaquillo lherzolite). The crust is assumed to

be saturated in water, whereas the mantle is anhydrous. Melting in the crust is not

taken into account.

The model bulk rock compositions were simplified to include the oxides SiO2, TiO2,

Al2O3, FeO, MgO, CaO, Na2O and MnO. Cr2O3 is not available in the database of

Holland and Powell [Holland and Powell, 1998] and was therefore not considered.

Chromium would effect the spinel-stability field, but due to its low volumetric con-

tent (< 0.5%) its overall contribution to the mean bulk density is minor. The same

reasoning justifies neglecting other minor components such as P2O5 and K2O. The

thermodynamic mineral database of Holland and Powell [Holland and Powell, 1998]
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Hawaiian Py-
rolite 1

MORB-
harzburgite
pyrolite 2

Depleted
(Tinaquillo)
pyrolite 1

Total Crust 3 Granodiorite
4

SiO2 45.2 45 45 57.3 66.1
TiO2 0.71 0.17 0.1 0.9 0.54
Al2O3 3.54 4.4 3.2 15.9 15.7
FeO 8.47 7.6 7.7 9.1 4.4
MgO 37.5 38.8 40 5.3 1.74
CaO 3.08 3.4 3 7.4 1.5
Na2O 0.57 0.4 0.2 3.1 3.75
MnO 0 0.11 0 0 0
K2O 0 0 0 1.1 2.78
H2O 0 0 0 saturated saturated

Table 2.1: Crustal and mantle compositions considered in this work. 1Green and Falloon
[1998], 2Green et al. [1979], 3Taylor and McLennan [1985], 4Wedepohl [1995]

was used in the calculations, together with solution models as listed in table 2.2.

The accuracy of the solution models was specified to resolve compositions with a

maximum error of 2 mol%. Melting of mantle rocks is accounted for by the pMELTS

model [Ghiorso et al., 2002]. Solution models compiled by Holland and Powell were

used for crystalline solution phase. To test the effect of using solution models from

other sources, calculations were done with a range of different solution models, and it

was found that the effect on the density structure was relatively minor. Furthermore,

some of the computations of Sobolev and Babeyko [Sobolev and Babeyko, 1994], who

used independently developed software and databases, have been redone here. These

computations showed good agreement, both for the density structure and for the phase

diagram section topology, which gives additional confidence in the robustness of our

approach.

The accuracy of the solution models was specified to resolve compositions with a

maximum error of 2 mol%. Melting of mantle rocks is accounted for by the pMELTS

model [Ghiorso et al., 2002]. Solution models compiled by Holland and Powell were

used for crystalline solution phase. To test the effect of using solution models from

other sources, calculations were done with a range of different solution models, and it

was found that the effect on the density structure was relatively minor. Furthermore,

some of the computations of Sobolev and Babeyko [Sobolev and Babeyko, 1994], who

used independently developed software and databases, have been redone here. These
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computations showed good agreement, both for the density structure and for the phase

diagram section topology, which gives additional confidence in the robustness of our

approach.

The most important mantle phase transitions are the spinel-lherzolite to garnet-

lherzolite transition that occurs around at pressures from 12-20 kbar and the plagioclase-

lherzolite to spinel/garnet-lherzolite that occurs at lower pressures (fig. 2.1). These

results are in agreement with previous computational results and experimental data

[see e.g. Wood and Yuen, 1983, Wood and Holloway, 1984]. Partial melting of mantle

rocks commences at temperatures above 1200 ◦C, which is in agreement with experi-

mental data [Green and Falloon, 1998].

The corresponding densities for these two compositions as well as for the other three

compositions listed in table 2.1 are shown in figures 2.2 and 2.3. The most significant

density change in the crust is the eclogite (plagioclase-out) transition (fig. 2.1). The

’total-crust’ density distribution has densities that are slightly higher then the ’gran-

odioritic’ crustal composition. Mantle densities are discontinuous across the stability

fields for garnet-, spinel-, and plagioclase-lherzolite, and at the onset of melting. The

density change related to the spinel-garnet phase transition is around 30-40 kg/m3.

This is the only phase transition that was considered in [Podladchikov et al., 1994]

and , [Yamasaki and Nakada, 1997]. However, the density change that is related to

the transformation of spinel-lherzolite to plagioclase-lherzolite (80-100 kg/m3) is larger

than the density effect of the spinel-garnet transition. Therefore the plagioclase-in

transition could potentially cause additional post-rift subsidence and syn-rift uplift.

2.3 One dimensional subsidence model

The influence of phase transitions on sedimentary basin subsidence was studied with

a one-dimensional kinematic model. The lithosphere is assumed to consist of a crust

and a mantle. During a rifting period of duration trift, the lithosphere is uniformly

thinned in such a way that the ratio between the post-rift and the pre-rift thickness is

δ =
Hpre

lith

Hpost
lith

(2.1)

here Hpre
lith is the pre-rift and Hpost

lith the post-rift lithospheric thickness. During and

after rifting, perfect isostasy is assumed, i.e. the pressure or lithostatic load at depth
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Figure 2.1: Phase diagram section of lithospheric rocks with A) a ’total crust’ chem-
ical bulk composition (see table 2.1). Numbers refer to the following phase relation-
ships (see table 2.2 for abbreviations): 1=Chl+Phg+lws+sph, 2=Chl+Kfs+pmp+sph,
3=Chl+Kfs+sph+lmt, 4=Chl+Kfs+sph+prh, 5=Chl+Phg+pmp+sph, 6=Chl+Kfs+sph+lmt,
7=Bt+Chl+ zo+sph, 8=Chl+Phg+zo+sph, 9=Bt+Chl+zo+sph, 10=Bt+Chl+sph, 11=
Bt+Chl+rt, 12=Bt+Chl+ilm, 13=Bt+Crd+ilm, 14=Bt+Crd+fa+ilm, 15=Bt+ Grt+ilm,
16=Bt+Amp+ilm, 17=Bio+rt, 18=Bt+Phg+rt, 19=Phg+zo+sph, 20=Phg+zo+sph,
21=Bt+Grt+rt, 22=Bt+Phg+Grt+rt, 23=Bt+Grt+rt, 24=Phg+Grt+ru, 25=Phg+Grt+rt,
26=Phg+Pa+Grt+rt, 27=Phg+Grt+zo+rt, 28=Phg+Grt+zo+sph+rt, 29=Phg+Grt+law+sph,
30=Phg+ Grt+lws+rt, 31=Chl+Phg+lws+rt. 32=Chl+Phg+lws+sph. Phases 1-27, 29-31 contain
qtz, phases 1-8,20,23-32 contain Cpx, phases 9-24,26-32 contain Amp and phases 1-19, 21-25
contain Pl B) a ’Hawaiian Pyrolite’ mantle composition. Numbers refer to the phase relation-
ships: 1=Cpx+Opx+Ol+Ilm+crn, 2=Cpx+Opx+Ol+Spl+Ilm, 3=Cpx+Opx+Pl1+Pl2+Ol+Ilm,
4=Cpx+Opx+Pl1+ Pl2+Ol+rt, 5=Cpx+Opx+Pl1+Ol+Spl+Ilm+rt, 6=Cpx+Opx+Pl+Ol+rt,
7=Cpx+ Opx+Ol+Spl+Ilm+Pl, 8=Cpx+Opx+Pl+Ol+Ilm, 9=Cpx+melt+Pl2+Ol+Ilm, 10= melt+
Ol+Ilm, 11=Cpx+Opx+Ol+Ilm+Grt.
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Symbol Phase Formula Ref.
Amp amphibole Ca2−2wNa2wMg3+2y+zxFe(3+2y+z)(1−x)Al3−3y−wSi7+w+yO22(OH)2 1
Bt biotite KMg(3−y)xFe(3−y)(1−x)Al1+2ySi3−yO10(OH)2 1
Car carpolite MgxFe(1−x)Al2Si2O6(OH)2 ideal
Chl chlorite Mg(5−y+z)xFe(5−y+z)(1−x)Al2(1+y−z)Si3−y+zO10(OH)8 2
Cpx clino-

pyroxene
Na1−yCayMgxyFe(1−x)yAlySi2O6 6

Crd cordierite Mg2xFeyMn(1−x−y)Al2SiO5(OH)2 ideal
crn corundum Al2O3 1
Ctd chloritoid MgxFeyMn(1xy)Al2SiO5(OH)2 1
Grt garnet Fe3xCa3yMg3(1−x−y)Al2Si3O12 1
ilm ilmenite FeTiO3 1
Ilm ilmenite MgxMnyFe1−x−yTiO3 ideal
Kfs alkali

feldspar
NaxKyAlSi3O8 3

lws lawsonite CaAl2Si2O7(OH)2·(H2O) 1
lmt laumontite CaAl2Si4O12 ·(4H2O) 1
Ol olivine MgxFe1−xSiO4 1
Opx ortho-

pyroxene
CazMgx(2−y)(1−z)Fe(1−x)(2−y)(1−z)Al2ySi2−yO6 1

Pl plagioclase NaxCa1−xAl2−xSi2+xO8 4
Phg phengite KxNa1−xMgyFezAl3−2(y+z)Si3+y+zO10(OH)2 1
Melt melt Na-Mg-Al-Si-K-Ca-Fe hydrous silicate melt 5
prh prehnite Ca2Al2Si3O10(OH)2 1
pmp pumpellyiteCa4MgAl5Si6O21(OH)7 1
qtz quartz SiO2 1
rt rutile TiO2 1
Sa sanidine NaxKyAlSi3O8 1
Spl spinel MgxFe1−xAlO3 1
sph sphene CaTiSiO5 1
St staurolite Mg4xFe4yMn4(1xy)Al18Si7.5O48H4 1
zo zoisite Ca2Al3Si3O12(OH) 1

Table 2.2: Mineral solution notation, formulas and model sources (1 = Holland and Powell
[1998]; 2 = Holland et al. [1998]; 3 = Chatterjee and Froese [1975]; 4-Newton et al. [1980];
5-Ghiorso et al. [2002]; 6-Holland and Powell [1996]). The compositional variables w, x, y,
and z may vary between zero and unity and are determined as a function of pressure and
temperature by free-energy minimization.
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Figure 2.2: Density as a function of pressure and temperature for different crustal rocks,
with a bulk chemical composition given in table 1. Superposed lines in A) shows the P-T
distribution in a lithosphere with parameters of fig. 5 and δ = 6 (see text).
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Hpre
lith is constant. The subsiding basin is filled with sediments of constant density

(2200 kg/m3), and thinning of the lithosphere is compensated by up-welling of mantle

asthenosphere. Thinning of the lithosphere occurs incrementally between time steps

to include effects of sediment blanketing and thermal cooling during rifting. Sediments

are also thinned incrementally to conserve volume of the already deposited sediments.

The effects of erosion are not incorporated and sediments can be uplifted above the

original zero-level.

The thermal evolution during and after rifting is computed with:

ρcp

(
∂T

∂t
+ vz

∂T

∂z

)
=

∂

∂z

(
k
∂T

∂z

)
+ A (2.2)

where ρ is density, cp heat capacity, t time, z vertical coordinate, vz vertical veloc-

ity during thinning, T temperature, k thermal conductivity and A radioactive heat

production. Radioactive elements are assumed to be only present in the crust. The

boundary conditions are constant temperature of T = 0◦C on top of the model and a

constant temperature of T = Tbase, at the base of the model. The initial condition is

a steady-state temperature distribution. Density is computed with three approaches.

The first approach is the classic approach in which density is temperature-dependent

through the thermal expansivity α. The second approach takes the pressure depen-

dence of density into account, which yields the following density-pressure-temperature

relationship

ρ = ρ0(1− αT + βP ) (2.3)

The third approach takes density from our computed density maps (figs. 2.2 and

2.3). At lower temperatures metamorphic reactions proceed slowly and metastable

phase assemblages can occur [e.g. Austrheim et al., 1997] so that our assumption of

equilibrium phase assemblages may not be valid. Therefore, we assume that the density

structure at temperature lower than 200 ◦C, is the same as that 200 ◦C. Simulations in

which this equilibrium temperature was increased to 300 ◦C did not show a significant

difference. An additional effect that has been ignored in the current study is the

effect of latent heat. This effect was considered by Yamasaki and Nakada [1997], who

demonstrated that it causes maximum changes in temperature of around 10 ◦C, which

is insignificant on a lithospheric scale [e.g. Connolly and Thompson, 1989].

Equation 2.2 is solved numerically with an implicit finite-difference scheme for the

diffusion terms [Borse, 1997] and temperature advection is calculated using the method
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Symbol Meaning Value
k Thermal conductivity 3 Wm−1K−1

A Radioactive heat production 10−6 Wm−1

cp Specific heat 103 Jkg−1K−1

α Thermal expansivity 3× 10−5 K−1

β Compressibility 1× 10−11 Pa−1

Table 2.3: Model parameters used in this work.

of characteristics. The numerical code was benchmarked versus variable analytical so-

lutions for diffusion and advection problems, versus the analytical solution of McKenzie

[1978] and versus results of a numerical basin code independently developed by one of

the co-authors (SMS). The nonlinearity in the problem, which is introduced through

the dependency of density on temperature and pressure, in combination with isostatic

equilibrium, is solved iteratively. For the calculations of density changes conserva-

tion of volume is assumed. Each one-dimensional element between two grid points is

assigned a density and the size of this element does not change during the iterative

density calculations. An alternative approach is to conserve mass so that the product

of element length times its density is the same before and after the density changes.

The numerical resolution was 200 grid points in vertical direction. Resolution tests

have been performed to ensure that the temporal and spatial resolution is sufficient.
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2.4 Results

2.4.1 Basin subsidence with and without phase transitions

A range of calculations have been performed for the solely temperature-dependent

density (TDD) formulation, a model in which density is solely dependent on P and

T (eq. 2.3), and a model in which ’realistic’ densities are taken from thermodynamic

calculations (fig. 2.4). Differences between the TDD formulation and the density

formulation of equation 2.3 are insignificant, indicating that the term βP in equation

2.3 can be neglected. However, the incorporation of realistic densities does have a large

influence on the subsidence behavior. In general, syn-rift subsidence is decreased and

post-rift subsidence is increased. During the syn-rift phase most models are initially

close to the subsidence behavior of TDD model. After ∼ 5 million years deviations can

be observed, which in some cases result in an uplift of several hundred meters. After

rifting ceases, models with realistic densities give significantly more post-rift subsidence

compared to TDD formulations. Moreover, realistic density models lead to episodes of

both increased and decreased subsidence rate relative to TDD models.

Syn-rift subsidence in the TDD formulation is dependent on the density contrast

between mantle and crust in such a way that a lower mean crustal density results in

more syn-rift subsidence (for the same average density of the infilled sediments). An

identical effect can be observed here in models with a realistic crustal density (fig.

2.4). Models with a ’granodioritic’ density subside more during the syn-rift phase

than models with a ’total-crust’ density. This reflects the fact that the ’total-crust’

model is largely based on inferred Archean crustal compositions that are denser than

granodioritic compositions.

Post-rift subsidence in the TDD formulation is independent of the density contrast

between crust and mantle. Thus the large differences that are observed during the

post-rifting phase in all models with realistic densities (fig. 2.4c) are entirely due to

the effect of phase transitions. Depending on the mineralogy, the additional post-rift

subsidence ranges from ∼ 30%− 100%.

To establish whether this additional subsidence is caused by mantle or by crustal

phase transitions, two experiments were performed: one in which the crustal phase

transitions and one in which the mantle phase transitions have been deactivated. De-

activating phase transitions has been done by replacing the realistic density model by
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a TDD formulation (eq. 2.3 with β = 0). The results demonstrate that mantle phase

transitions are, to a large extent, responsible for the additional post-rift subsidence

that is observed (fig. 2.4B).

Syn-rift uplift is observed in almost all models with realistic densities (fig. 2.4), and

occurs either at the onset of rifting or after a finite amount of thinning. The amount

of syn-rift uplift at the onset of rifting is relatively small (maximum ≈ 50 meters)

compared to the amount of uplift that is obtained after a finite amount of extension.

However, it has an impact on the total amount of syn-rift subsidence, since it prevents

the basin from subsiding for ∼ 1 million years. In the next section we analyze the

reasons for the syn-rift-uplift and study its dependence on various parameters.

2.4.2 Effect of stretching factor on basin subsidence

Increasing the stretching factor δ with a realistic density model (fig. 2.5) enhances

the effect of phase transitions in that it results in less syn-rift subsidence and more

post-rift subsidence than in simple density models. For example, a stretching factor

of δ = 1.5 causes additional post-rift subsidence of 20% − 40%, whereas stretching

factors of δ = 4 and δ = 6 cause additional subsidence of 50% − 110%, depending on

the composition of crustal and mantle. Up to 1000 m of syn-rift-uplift is observed in

models with a ’total-crust’ crustal composition combined with either a Hawaiian- or a

MOR-pyrolitic mantle composition for stretching factors of 4 and 6. If syn-rift-uplift

occurs, it is followed by a period of increased post-rift subsidence.

The phenomena that cause syn-rift uplift and extensive post-rift subsidence in

the simulations with realistic density models can be understood by considering the

variations in density caused by phase transformations during and after rifting (figs.

2.2A and 2.3B). At the onset of rifting, the mantle lithosphere is composed of spinel-

lherzolite up to a pressure of 12 kbar (corresponding to a depth of 41 km) and of

garnet-lherzolite at greater pressures. During rifting, spinel-lherzolite and part of the

garnet-lherzolite transforms into plagioclase-lherzolite. The onset of syn-rift uplift (fig

2.5) corresponds to the introduction of plagioclase-lherzolite into the model mantle

and the end of syn-rift-uplift, at ∼ 8 myr, corresponds to the complete transformation

of spinel-lherzolite into plagioclase-lherzolite. After rifting ceased, the mantle cools

and plagioclase-lherzolite transforms back into garnet- and spinel-lherzolite. Simula-
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tions with lower stretching factors (e.g. δ = 1.5), do not result in the formation of

plagioclase-lherzolite and have no syn-rift uplift (see fig. 2.5). Thus the formation of

plagioclase lherzolite is an influential reaction for basin subsidence.

Syn-rift uplift has a different magnitude for different mantle compositions. A de-

pleted mantle composition leads to generally less syn-rift uplift (fig. 2.5). This can be

attributed to the fact that a depleted mantle has a higher Mg-content, which favours

the growth of olivine and orthopyroxene, and increases the density of the plagioclase-

lherzolite by 10-25 kg/m3. This effect shows that syn-rift uplift is dependent on the

mantle composition. The post-rift and total subsidence, however, are only weakly de-

pendent on the mantle composition (fig. 2.5). We thus conclude that syn-rift uplift is

a consequence of the generally lower density of the plagioclase-lherzolite compared to

that of spinel- and garnet-lherzolite, and that this uplift will only occur if the stretching

factor δ exceeds a minimum value δcrit (fig. 2.5).

2.4.3 Parameterized density models

Our simulations with realistic density models indicate that the garnet-spinel- plagioclase-

lherzolite transitions have the greatest influence on basin subsidence. The simulations

also demonstrate that crustal phase transitions do not have a large impact on post-rift

subsidence, but that the crustal rock assemblage does influence the syn-rift subsidence

since it changes the mean density of the crust. The effect of the crustal density model

is thus similar to a TDD formulation with a crustal density chosen to correspond to

the mean density.

To verify whether the mantle transitions are indeed the most important ones, and

to reduce the computed density maps to a simple parameterization, the computed ’real’

density distributions have been fit by least-squares (see Appendix A). Partial melting

has not been included in the current density-parameterization since the melt is assumed

to be rapidly removed by dikes [Rubin, 1993] or a porous flow mechanism [Connolly

and Podladchikov, 1998] which changes the bulk chemistry of the rocks and invalidates

the model used here.

The ’real’ density models are compared with the parameterized density models

for different stretching factors, compositions and crustal/mantle thicknesses (fig. 2.6).

The maximum error in total, syn-rift and post-rift subsidence between the real mod-
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Figure 2.6: Comparison of basin subsidence with real and simplified density models, for a
stretching factor of δ = 1.5 and δ = 3, and for a) a crustal thickness of 35 km and a mantle
thickness of 70 km and b) a crustal thickness of 35 and a mantle thickness of 110 km.

els and the parameterized models is around 10 %. The parameterized models re-

produce the most important features of the real models, including syn-rift-uplift and

accelerated post-rift subsidence. The low density of plagioclase-lherzolite compared to

spinel/garnet-lherzolite is responsible for syn-rift-uplift and a subsequent phase of ac-

celerated post-rift subsidence (fig. 2.6). Increasing the density of plagioclase-lherzolite

reduces uplift. The total subsidence after post-rift subsidence remains unaltered.

2.4.4 Deviations from the TDD pure-shear stretching model

In this section the parameterized density models are used to estimate the maximum syn-

rift uplift and post-rift subsidence that can be produced by phase-transition models.

The maximum effect of phase transitions in the models presented before was obtained

for a combination of a ’total-crust’ crust and a MOR-pyrolite mantle. The minimum

effects occurred for a granodioritic crust and a depleted-pyrolite mantle. An estimate

of the deviations that phase transitions give with respect to TDD formulation are

thus be made by performing systematic computations with both the minimum and the

maximum model.

Several thousand computations have been performed, in which the stretching factor

and the crustal thickness were varied, but the total lithospheric thickness and the base
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temperature were maintained constant (fig. 2.7). Models with Hcrust/Hlithos < 0.2 are

characterized by a phase of uplift at the beginning of the rifting period, as predicted

by previous work [Podladchikov et al., 1994]. This is followed by a phase of subsidence

and, in some cases, by an additional uplifting phase (fig. 2.7a). Maximum obtainable

syn-rift uplift ranges from 700 m in the minimum model to ∼ 1000m in the maximum

model.

Decreasing Tbase to 1000◦C decreases the maximum syn-rift uplift by 30%. In addi-

tion, the critical stretching factor to initiate syn-rift uplift is increased from 2− 2.5 to

3− 3.5. Increasing Tbase to 1400◦C decreases the critical stretching factor from ∼ 2 to

1.5. Increasing the total lithospheric thickness from 110 km to 160 km, increases the

critical stretching factor required to initiate syn-rift uplift from 2 to 3, and narrows the

range of Hcrust/Hlithos for which syn-rift occurs. If lithospheric thickness is decreased,

the Hcrust/Hlithos-range widens from 0.15 to 0.4 but the maximum uplift is decreased

by ∼ 20%.

Compared to the TDD formulation, phase transitions cause additional post-rift

subsidence of at least 20%, and as much as 90% in the maximum model or 50% in the

minimum model (fig. 2.7D). Increasing Tbase to 1400◦C increases the subsidence by 20%,

whereas decreasing Tbase to 1000◦C halves the difference. Increasing the lithospheric

thickness to 160 km increases the maximum deviations of the TDD formulation by 30%

and decreasing the thickness to 80 km, decreases the deviations by 30%.

2.5 Discussion and conclusions

Realistic density models (appendix) that are reproduced by simple parameterizations

have been implemented in kinematic basin simulations. The simulations demonstrate

that, in general, phase transitions reduce syn-rift subsidence and increase post-rift sub-

sidence compared to the uniform stretching (TDD) model, in which density is solely

temperature-dependent. The deviations in post-rift subsidence from the TDD model

resulting from realistic density models vary from ∼ 20% at low stretching factors to

> 90% at greater stretching factors. Differences in mineralogy may result in different

amounts of subsidence, but all the cases considered generate trends that deviate sig-

nificantly from that predicted by TDD models. In distinction from the TDD model

that does not result in syn-rift uplift for reasonable parameters, use of realistic density



2.5. DISCUSSION AND CONCLUSIONS 41

model can explain up to 1 km of syn-rift uplift. In contrast to simpler modelling ef-

forts to account for the effect of phase transitions [e.g. Yamasaki and Nakada, 1997],

which predicted syn-rift uplift preceding rifting, we obtain uplift during stretching.

This syn-rift-uplift is caused by the formation of plagioclase-lherzolite from spinel-

and garnet-lherzolite, which occurs during rifting (fig. 2.8). During the thermal post-

rift stage, plagioclase-lherzolite is transformed back into spinel- and garnet-lherzolite,

thereby causing an additional amount of postrift subsidence. A two-dimensional simu-

lation points out that plagioclase-lherzolite mainly forms below the center of the basin

(fig 2.8). Thus syn-rift uplift is to expected in the center of the basin only. Plagioclase-

lherzolite will only be detectable seismically during, or shortly after, an active extension

phase.

In our simulations we assumed that phase assemblages are always at equilibrium.

This assumption may require explanation. In general, metamorphic reactions are in-

fluenced by deformation, presence of volatiles, temperature, etcetera. In crustal rocks,

volatiles strongly enhance metamorphic reaction kinetics [e.g. Rubie and Thompson,

1985, Austrheim et al., 1997]. If these volatiles are removed during prograde metamor-

phism, reaction rates drop and the prograde metamorphic assemblage are preserved

[Connolly and Thompson, 1989, Rebay and Powell, 2002]. For anhydrous mantle assem-

blages, thermal activation is the dominant factor. It has been argued that anhydrous

metamorphic reactions occur at geologically short timescales for temperatures above

600◦C [Ahrens and Schubert, 1975]. We demonstrate that the mantle reactions have

the largest impact on basin subsidence. Typical mantle temperatures are above 600◦C

(fig. 2.3a), at these temperatures both homogeneous and heterogeneous equilibrium

are likely.

In all our models, the accommodation space created by subsidence is completely

filled with sediments (i.e. water depth is zero). Once sediments are deposited, they

will never be eroded. This implies that during phases of syn-rift uplift, sediments are

uplifted above the initial zero-level. We have performed additional simulations in which

these sediments were eroded infinitely fast above the zero-level. These simulations

resulted in a factor two increase of the amount of syn-rift uplift. The total amount of

subsidence, however, was nearly unaffected. Thus the simulations presented here can

be regarded as being conservative with respect to the amounts of syn-rift uplift.

For more realistic two- and three-dimensional models the effect of flexural isostasy
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has to be taken into account. A lithospheric flexural rigidity or effective elastic thick-

ness [Watts, 2001, Burov and Diament, 1995] can decrease or damp the syn-rift uplift

significantly only if the width of the area in which uplift occurs is considerably smaller

than the flexural wavelength. Effective elastic thicknesses used for extensional basin

modelling are usually small (smaller than around 5 km, e.g. Kusznir and Ziegler [1992],

Bellingham and White [2002]) providing flexural wavelengths smaller than around 100

km. Hence, for such values of effective elastic thickness, syn-rift uplift will be only

slightly decreased for most basin and passive margin dimensions. The EET is fre-

quently assumed to be a function of the depth of a particular isotherm [Watts, 2001,

and references therein]. Syn-rift uplift occurs at the end of rifting, when isotherms are

most elevated and the temperature-dependent EET is smallest. Thus phase transitions



2.5. DISCUSSION AND CONCLUSIONS 43

might have a considerable effect also in cases with large EET’s. Furthermore, lateral

heat conduction in two- and three-dimensional models will provide considerable dif-

ferent results only if the thinning factors vary strongly in the lateral direction causing

strong lateral temperature variations ( fig. 2.8). Rheology may potentially influence

our results in two ways: (1) the viscosity of the asthenosphere determines to a large

extent how well the lithosphere is isostatically compensated. Large asthenospheric vis-

cosities may reduce and delay the uplift phase. (2) Increasing the effective viscosity of

the upper lithosphere will result in larger Deborah numbers and therefore larger effec-

tive elastic thicknesses. This may decrease syn-rift uplift as discussed above. However

more work in this direction is required to obtain insight in the interaction between

phase transitions and rheologically controlled dynamical processes [see e.g. Artyushkov

et al., 2000]. In this paper we have focussed on the effect of metamorphic reactions

on basin subsidence by comparison with the simplest version of the stretching model.

Subsequent modifications of this model such as depth-dependent stretching [Royden

and Keen, 1980], depth of necking combined with flexural isostasy and erosion [e.g.

Kooi et al., 1992, van Balen et al., 1995], ductile lower crustal flow [Burov and Cloet-

ingh, 1997], magmatic underplating and intraplate stresses can also cause additional

subsidence and uplift in e.g. the North Sea [Cloetingh et al., 1990, Kooi et al., 1991].

Most of these models have employed a simple TDD model. We have demonstrated here

that the incorporation of more realistic density models may have a considerable effect

in itself. Incorporating realistic densities in any of the models above will thus enhance

the effects. Depth-dependent stretching caused by ductile crustal flow, for example,

would, if combined with metamorphic reactions, require less differential stretching be-

tween crust and mantle lithosphere to obtain the same subsidence as depth-dependent

stretching models without phase transitions. Phase transitions could in the same way

enhance active rifting [Huismans et al., 2001], since it increases the buoyancy of the

up-welling mantle dome. It seems unlikely that any of these mechanisms alone can

fully explain the formation of sedimentary basins.

Models for extensional basin formation based on kinematic thinning are frequently

applied to reconstruct particular observed basin stratigraphies and to estimate the

basin’s thermal history, which is essential for evaluating petroleum prospects. The

thermal history is strongly controlled by the value of the thinning factors used to

generate the observed basin subsidence. Our results indicate that models with and



44 CHAPTER 2. BASIN SUBSIDENCE

without mineral phase transitions will provide significantly different thinning factors

to generate the same amount of syn-rift or post-rift subsidence. Therefore, thermal

histories provided by models with and without mineral phase transitions are likely to

be considerably different. Reliable thermal history reconstructions should, therefore,

compare the thermal histories obtained by models with and without mineral phase

transitions.
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2.7 Simplified phase diagrams

Simplified phase diagrams have been derived from the real phase diagrams by least-

squares fitting. For this purpose, the mantle phase diagram has been divided into three

parts: spinel-lherzolite, plagioclase-lherzolite and garnet lherzolite. The crustal phase

diagram has been divided into two parts, and equations are given in table 2.4. The

mantle phase diagram has been divided into three parts (table 2.5). The maximum

error in density is around 1% for mantle compositions and around 6% for crustal

compositions. The parameterized phase diagram is valid for the temperatures and

pressures that are indicated. The density of rocks at lower temperatures than 200◦C

is assumed to be the density at a temperature of 200◦C, since metamorphic reactions

become too slow and our equilibrium phase diagram is no-longer applicable.
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Low-P region High-P region
ρ0 α β ρ0 α β

Composition ×10−5 ×10−11 ×10−5 ×10−11

total crust 2835 2.82 3.46 3060 1.96 1.34
granodioritic 2683 8.57 4.85 2918 4.11 2.09

Table 2.4: The simplified crustal phase diagram is composed of two regions. Density in
each region can be computed with ρ = ρ0 (1− αT + βP ), with P in Pa and T in ◦C. The
boundary between the two regions is given by P = 1.92× 106T − 1.6× 107 for the total crust
and by P = 2× 106T − 3.2× 108 for a granodioritic crust.

ρ =
ρ0 (1− αT + βP )

Spinel lherzolite Plagioclase lherzolite Garnet lherzolite

Pyrolite ρ0 α β ρ0 α β ρ0 α β
Composition ×10−5 ×10−11 ×10−5 ×10−11 ×10−5 ×10−11

Hawaiian 3369 3.87 9.54 3388 3.54 1.34 3270 3.67 1.65
MOR 3363 3.87 8.62 3387 3.54 1.34 3249 3.39 1.45
Depleted 3353 3.88 9.25 3371 3.56 1.34 3275 3.51 1.50

P = aT 2 + bT + c Plagioclase-Spinel boundary Spinel-Garnet boundary
Composition a b×106 c×108 a b×106 c×109

Hawaiian -345 1.96 -4.4 1825 -2.7 2.2
MOR -460 1.99 -4.4 1946 -3.1 2.4
Depleted -435 1.91 -4.1 1660 -2.9 2.4

Table 2.5: The simplified mantle diagram is composed of three regions. Fitted functions for
density in each region are indicated as well as the boundaries between the different regions.
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Chapter 3

The interplay between folding,
diapirism and erosion in
compressional settings1

Abstract

Domes and basins are evidence for vertical movements in both compression and

extension tectonic environments. They are thus evidence for interplay between grav-

ity and tectonic forces in structuring the continental crust. We employ analytical and

numerical techniques to investigate the respective roles of gravity and compression dur-

ing the growth of crustal-scale buckle anticlines and diapirs submitted to instantaneous

erosion. The analytical perturbation method, which explores the onset of both types

of instability, yields a ’phase-diagram’ discriminating eight folding-diapirism modes,

five of which are geologically relevant. Numerical simulations show that the phase

diagram is applicable to evolved, finite amplitude stages. Calculated strain fields in

both diapirs and folds show normal sense of shear at the interface, if the upper layer is

thick compared to the lower layer. We conclude that the present-day structural tech-

niques applied for distinguishing diapiric domes and folds are ambiguous if detachment

folding and intense erosion take place during deformation, and that domes displaying

extensional structures at their periphery do not necessarily reflect extension.

1Part of this work has been published in : Burg, J.P., Kaus, B.J.P, Podladchikov, Y.Y. (2004)
Dome structures in collision orogens. Mechanical investigation of the gravity/compression interplay,
in Whitney, D.L., Teyssier, C., and Siddoway, C.S., Gneiss domes in orogeny: Geological Society of
America Special Paper 380, p. 47-66.)
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3.1 Introduction

Collision mountain systems are long, linear to arcuate belts at the Earth’s surface.

In these mountains, abundant folds and thrusts reflect regional shortening. Isostatic

considerations, gravimetric studies and seismic information show that horizontal short-

ening is intrinsically related to crustal thickening and it requires 5 to 7 km of crustal

root to balance each km of mountain range above sea level. In other words, a mountain

grows 5 to 7 times more downward than upward. Consequently, collision-mountains

are sites where the continental crust is buried, thus subjected to intense metamorphism

and igneous activity. Thickening of the buoyant crust and subsequent uplift create a

high topography. The mountain belt becomes also a region of erosion, which digs out

deep crustal levels and supplies sedimentary basins. The long-term process results in

ancient orogens being levelled to flatlands that expose metamorphic and magmatic rock

associations, those that were part of the mountain roots. Typically, these high-grade

metamorphic regions display large closed structures termed domes and basins. Appli-

cation of plate tectonics at understanding collision orogens has focused on horizontal

relative movements because convergence is one to two orders of magnitude larger than

orogenic vertical movements. Horizontal transport is classically inferred from recum-

bent folds and thrust systems. Domes and basins are evidence for vertical movements

(e.g. Brun [1983]). Five distinct origins have been, postulated:

• Folding: Many domes may be double plunging anticlines and/ or culminations

of crossing anticlines of two separate generations and different trends [Ramsay,

1989, Snowden and Bickle, 1976].

• Diapirism of igneous intrusions: A usual explanation of blob-like geological map

patterns in high-grade metamorphic terranes postulates that mobilized rock masses

rose buoyantly in the core of domes in response to the gravity instability result-

ing from the low density and viscosity of the granitic core below the denser and

stronger wall rocks [e.g. Ramberg, 1972, 1981, Brun et al., 1981, Ramsay, 1989].

This mechanism has been modelled mathematically [Ramberg, 1972, Fletcher,

1972] and experimentally [e.g. Dixon, 1975].

• Reactivation of basement plutons: The development of the type mantle gneiss

domes, in Finland [Eskola, 1949] invokes two orogenic events. During the first
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orogeny, granite plutons were emplaced in metasediments and metavolcanites.

Erosion exposed the plutons and country rock, which were covered by a younger

sequence of sediments. Injection of new magma during the second orogeny reac-

tivated the old plutons, causing them to expand upwards and thereby fold the

overlying strata into domes and basins. We consider this interpretation as a

restrictive case of polyorogenic yet superposed diapirism and/or folding.

• Extensional culminations: rocks of mid-crustal levels are brought to shallower lev-

els by tectonic denudation and erosion, horizontal extension along major, shallow-

dipping detachments scraping away the overlying cover [e.g. Coney and Harms,

1984]

• Upward impingement: A strong or rigid basement block forces bending of its

plastic cover [Gzovsky et al., 1973].

These five mechanisms are not mutually exclusive. For example, fold interference

is not incompatible with gravity instability since both mechanisms could operate syn-

chronously, in particular where density contrast is invariably present between core and

surrounding rocks [Snowden and Snowden, 1981]. These five mechanisms produce up-

ward movement of lower and mid-crustal levels during orogeny, but refer to different

force systems since compression and extension are predominantly horizontal forces of

opposite sign and diapirism versus impingement involve predominantly vertical forces

acting with and against gravity, respectively. By chance for geologists, they develop

symptomatic structural features that allow identifying which mechanism was dominant

[Brun, 1983]. In particular, extensional core complexes display a marked asymmetry

of metamorphic grade and ages contrasting with the symmetry in folds and diapirs

(Fig. 3.1). Our aim is to discuss the growth and the mechanical characteristics of

two types of domes in the light of analytical solutions and two-dimensional numeri-

cal codes: (1) large upright folds for which upward amplification is fundamentally a

response to horizontal compression; (2) magmatic bodies for which diapiric (i.e. pierc-

ing) rise controlled by the vertical gravity seems to play a significant role. Extensional

metamorphic core complexes in which rocks of middle crustal levels are uplifted and

exposed by a process dominated by large offsets along low-angle normal faulting are

not discussed in this work because mechanical insight has been given by Lavier and

Buck [2002].
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Figure 3.1: Synthetic maps (top) and sections (below) showing the symmetry and asymme-
try that characterize folds and diapirs on the one hand, and extensional metamorphic core
complexes on the other hand.

3.2 Crustal-scale folds

3.2.1 Geological information

Although geologists have accepted the existence of large recumbent folds (fold nappes)

with several tens of kilometers long inverted limbs [e.g. Arthaud, 1970, Ramsay, 1981],

they resisted the concept of big buckle folds, with the intuitive belief that high am-

plitude buckles could not stand against gravity [e.g. Ramberg, 1970]. However, the

concept becomes valid in places where erosion can behead crustal-scale anticlines dur-

ing their growth, thus eliminating the height and relief problem. This is particularly

the case in the Himalayan syntaxes for which the mechanical consistency of the erosion

condition has been tested numerically [Burg and Podladchikov, 1999, 2000]. In these
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very active Himalayan regions, buckle folding has allowed exhumation of 30 km deep

rocks within less than 5 Myr [Zeitler et al., 1993, Burg et al., 1997, 1998]. These neo-

tectonics examples bring support to crustal fold interpretation of older domes such as

in the Variscides [Stipska et al., 2000] and some mantled gneiss domes [Snowden and

Bickle, 1976], although the folding perception is gone out of fashion. The apparent

lack of periodically spaced anticlines neighboring domes interpreted as folds is a com-

mon criticism of the buckle interpretation since smaller scale simulations emphasize

periodicity in buckling [e.g. Currie et al., 1962, Smith, 1977]. The relative isolation of

large-scale folds is a puzzling singularity on which we will comment in the light of the

numerical modelling presented here.

3.2.2 Mechanical background

A considerable body of work has shown, both theoretically and experimentally, that if

a thin layer undergoing layer-parallel shortening is more competent (i.e. stiffer) than

the surrounding material, this condition is unstable and buckling as an instability of

the stiff layer will occur, while the entire system is deforming in pure shear [e.g. Price

and Cosgrove, 1990]. Early work focused on the analysis of buckling of a layer, either

elastic or viscous, in an infinite viscous matrix taking into account a simple linear

relationship between stress and strain or stress and strain-rate [Smoluchowski, 1910,

Biot, 1961, Ramberg, 1964, Ramberg and Stephansson, 1964]. Modelling relevant to

lithospheric-scale deformation, assumes that a powerlaw viscous layer of thickness H

(representing the crust) floats on a viscous halfspace (representing the mantle) (Fig.

3.2A). We used a setup similar to that of Schmalholz et al. [2002], and we additionally

implemented fast erosion at the top surface and considered an inverse density contrast

between the layer and the underlying halfspace. If the viscous lower halfspace does not

exert any shear stress on the layer, the thin-plate theory applies [e.g. Reddy, 1999].

µ1

3n

∂2

∂x2

(
Hl(x)3∂3W (x, t)

∂x2∂t

)
+

∂

∂x

(
PHl(x)

∂Wm(x, t)

∂x

)
− (σNtop − σNbot) = 0 (3.1)

where µ1 is the effective viscosity of the upper layer, n its power-law exponent and P

is the mean viscous layer-parallel stress, given by [e.g. Turcotte and Schubert, 2002,

Schmalholz et al., 2002]:

P = 4µ1ε̇BG (3.2)
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Figure 3.2: A) Setup for analytical investigation of a powerlaw viscous plate floating on a
linearly viscous halfspace. B) Growth rate plotted versus normalized wavelength for the case
without gravity. Symbols as in the text.

where ε̇BG is the background pure shear shortening rate.

W (x, t) describes the deflection of the lower boundary of the layer, which is assumed

to be sinusoidal with a time-dependent amplitude A(t):

W (x, t) = A(t)sin(ωx) (3.3)

where ω = 2π/λ is the wavenumber.

Wm(x, t) = W (x, t)/2 is the deflection of the middle line of the layer. Hl(x) is the

thickness of the layer:

Hl(x) = H −W (x, t) = H − A(t)sin(ωx) (3.4)

where H is the mean thickness of the layer.

Finally σNtop and σNbot are the vertical forces exerted at the top and bottom of the

layer, respectively. The top is kept flat, so σNtop = 0. The layer bottom is deflected

and has a density contrast, so the vertical forces that act on the layer are due to the

gravitational load and the viscous drag of the underlying halfspace with viscosity µ2

[e.g. Turcotte and Schubert, 2002, equation 6-165, page 251]:

σNbot = 2µ2 ω
∂W (x, t)

∂t
− (ρ1 − ρ2)gW (x, t) (3.5)
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Substituting (3.3), (3.4) and (3.5) into (3.1), and keeping only linear terms (omitting

A(t)2 terms, since A(t) is assumed to be small) gives a linear ordinary differential

equation (ODE) for A(t):

µ1H
3ω4

3n

∂A(t)

∂t
− P

2
Hω2A(t) + 2µ2 ω

∂A(t)

∂t
− (ρ1 − ρ2)gA(t) = 0 (3.6)

The solution of this ODE has the form A(t) = A0e
(qt) where q is the growth rate, given

by:

q =
3n

(
PHω2

2
+ (ρ1 − ρ2)g

)

ω (µ1H3ω3 + 6 µ2n)
(3.7)

Substituting P from equation (3.2) into equation (3.7) yields:

q

ε̇BG

=
3n

(
2µ1Hω2 + (ρ1−ρ2)g

ε̇BG

)

ω (µ1H3ω3 + 6 µ2n)
(3.8)

Setting the gravity term g to zero yields a solution for folding without gravity. Plotting

q/ε̇BG versus λ/H for this case shows that the growth rate has a single maximum (Fig.

3.2B) that can be found by setting the derivative of equation (3.7) versus ω to zero and

solving for ω. The only positive solution for ω yields the so-called dominant wavelength

[Biot, 1961, Ramberg and Stephansson, 1964]:

λdom = 2πH

(
µ1

3nµ2

) 1
3

(3.9)

with the corresponding growth rate:

qmax = 2n

(
µ1

3nµ2

) 2
3

ε̇BG (3.10)

Equation (3.9) shows that the dominant wavelength is dependent on the thickness of

the layer and on the viscosity contrast between the upper and lower layers, a parameter

that has a large amount of uncertainty in nature. Equation (3.10) shows that the

growth rate is essentially dependent on the viscosity contrast. Note that the expressions

for dominant wavelength and growthrate have a factor 3 in the denominator, which is

appropriate for folding of one interface only.

It is interesting to compare these expressions with the solutions obtained for a folded

upper surface without erosion, [Schmalholz et al., 2002]. The expressions for dominant
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wavelength are the same, but the dominant growth rate is twice smaller under fast

erosion. This counter-intuitive result, which was confirmed by more complete thick-

plate analysis, can be understood by noting that the folding instability is driven through

deflections on interfaces between different layers. Since there is only one deflected

interface in this set-up, the rate at which the instability grows is twice slower than

when two interfaces are present. Another point worth noting is the effect of gravity.

It can be seen from equation 3.7 that a stable density configuration (ρ1 < ρ2) will

decrease the growth rate, and a rather large density contrast will eliminate the folding

instability. If the density configuration is unstable (ρ1 > ρ2), calculations show that

the dominant growth rate and wavelength go both to infinity.

One should note that the above derivation has the implicit assumption that folds

are periodic by inserting a sinusoidal interface deflection (Eq. 3.3). However, the

introduction of nonlinear effects for example in the matrix can result in a more lo-

calized type of folding [e.g. Hunt et al., 1996]. In addition, both laboratory [Abbassi

and Mancktelow, 1992] and numerical [Zhang et al., 2000] experiments, pointed out

the strong localizing effect that finite amplitude initial perturbations can have on the

distribution and morphology of buckle folds.

The analysis presented above has been extended to large-scale problems by including

the effects of a finite, low-viscous bottom layer called ”matrix”, a denomination we will

keep in this work to stay in line with earlier literature. Three different folding modes

exist depending on both the thickness of the lower viscous layer and the efficiency

of gravitational versus compressional forces [Schmalholz et al., 2002]. For example,

gravity plays the dominant role in the lithospheric buckling of Central Asia, whereas

the thickness of the underlying ’soft’ layer controlled buckling in the Zagros and Jura

mountains. In the following part of this work, we further employ the setup described

above [see also Goff et al., 1996].

3.3 Magmatic/diapiric domes

3.3.1 Geological Information

Diapirism and intrusion are processes involved when a geological formation (the source

layer) has come under sufficient stress (including gravity driven components) to flow,
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pierce and break through overlying strata of higher density and strength. Magmas

commonly have densities lower than those of the overlying rocks and consequently tend

to ascend through passageways or zones of weakness. Most magma does not reach the

Earth’s surface but crystallizes at depth to form plutonic bodies of igneous rocks. If

plutons are diapirs (a concept still disputed) magma stops rising where surrounding

rocks have lower density and/or at the temperature-equivalent depth where magma

cools and solidifies [e.g. Vigneresse and Clemens, 2000, Burov et al., 2003]. In fact, the

coeval emplacement at similar depth of magmas with different composition indicates

that there is no neutral buoyancy level in the crust. Accordingly, purely gravity-

driven igneous diapirism should not exist [e.g. Vigneresse and Clemens, 2000]. The

abundance of pluton-cored domes in orogens, in particular in the European Variscides

[e.g. Zwart, 1967] points to the participation of any tectonic deformation during magma

ascent [Brun et al., 1981, Vigneresse and Clemens, 2000]. A typical history comprises

a deformation-controlled mechanical instability that becomes the location from which

buoyant upwelling of relatively light magma starts while ”ballooning” characterizes

final emplacement [Pitcher, 1979, Pons et al., 1992]. A similar history is invoked for

salt tectonics [e.g. Jackson and Talbot, 1989, Poliakov et al., 1996] and many migmatite

domes [see discussion in Teyssier and Whitney, 2002]. Diapiric ascent thus most often

occurs in a regional tectonic setting whose actual role requires new investigations.

3.3.2 Mechanical background

Here, we only summarize statements from previous work. The driving force of diapirism

is the density inversion [Biot and Odé, 1965]. The spontaneous rise of buoyant domes

into a denser overburden in the Earth’s gravity field is strongly inspired by salt tectonics

[e.g. Talbot and Jackson, 1987]. In its simplest form, the rock system consists of two

horizontal layers, each of which has uniform thickness, density and Newtonian viscosity

[e.g. Woidt, 1978]. Whether viscosities are equal or different, the setting is unstable if

the overlying layer is denser than the lower one and the interface separating the two

layers is not perfectly flat. The gravitational instability of a heavy fluid overlying a

lighter fluid is named Rayleigh-Taylor instability and is able to grow to finite amplitude,

independent of background shortening or extension.

Dimensional analysis allows gaining first insight in the basic parameters that control
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Figure 3.3: A) Setup for analytical investigation of a low density viscous fluid underlying a
higher density viscous halfspace. B) Growth rate plotted versus normalized wavelength.

the Rayleigh-Taylor instability [Whitehead, 1988]. A layer of thickness H, density ρ2

and viscosity µ2 underlies an infinite viscous halfspace (see Fig. 3.3A). The horizontal

velocity vx in the layer is much larger than the vertical velocity vz. Force balance in

the layer is given by the lateral pressure gradient p:

p

λ
= µ2

vx

H2
(3.11)

where λ is the wavelength of the sinusoidal perturbation on the interface separating

the two fluids. The upper halfspace with a viscosity µ1 and density ρ1 will have a force

balance between buoyancy, vertical velocity and viscosity:

p

λ
= µ1

vz

λ2
+

(ρ1 − ρ2)gA(t)

λ
(3.12)

where the density difference between the two layers is assumed to be > 0, g the gravi-

tation acceleration and A(t) the time-dependent amplitude of the perturbation. Com-

bining equations (3.11) and (3.12) gives:

µ2
vx

H2
− µ1

vz

λ2
=

(ρ1 − ρ2)gA(t)

λ
(3.13)

Assuming further that the fluids are incompressible, [see equation 6-53 in Turcotte and
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Schubert, 2002, p. 235]:

∂vx

∂x
+

∂vz

∂z
= 0

gives:
vx

λ
+

vz

H
= 0 (3.14)

Like for folding, the interface instability grows exponentially with time (A(t) = A0e
qt)

at a growth rate q while the vertical velocity is related to amplitude as:

vz =
∂A(t)

∂t
(3.15)

where ∂/∂t expresses the time derivative. Substituting Equations (3.14) and (3.15) in

equation (3.13) gives:

(
µ2λ

H3
+

µ1

λ2

)
qA0e

qt = −(ρ1 − ρ2)gA0e
(qt)

λ
(3.16)

and solving for q:

q = − (ρ1 − ρ2)g

λ
(

µ2λ
H3 + µ1

λ2

) (3.17)

This simple derivation shows that the growth rate depends on the wavelength of the

perturbation [Whitehead, 1988]. Figure 3.3B plots the growth rate as a function of

normalized wavelength (λ/H). For the specific wavelength/thickness ratio:

λdom

H
= 0.79

(
µ1

µ2

) 1
3

(3.18)

the growth rate is maximum:

q = 0.53
g(ρ1 − ρ2)H

µ1

(
µ1

µ2

) 1
3

(3.19)

This equation predicts the most favorable condition for the development of Rayleigh-

Taylor instabilities (pure diapirism). More complete derivations using a two-dimensional

perturbation analysis also reach this basic result [Whitehead, 1988], albeit with different

coefficients. The notable conclusions gained from these simple mechanical considera-

tions are:
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• The viscosity contrast is the chief parameter controlling the wavelength of a

diapiric instability. As such, the dependence of the dominant wavelength on

viscosity is the same as for folding of a viscous layer in a viscous matrix (see

equations 3.9 and 3.10).

• Density influences the growth rate (and thus velocity) only and has a negligible

effect on the wavelength.

3.4 Analytical perturbation method

Several authors have considered the case of a Rayleigh-Taylor instability under com-

pression and demonstrated that above a certain strain rate the folding instability be-

comes dominant [e.g. Conrad and Molnar, 1997, Ismail-Zadeh et al., 2002]. To solve

our geological preoccupation, which is how to know fold-domes from diapir-domes,

we decided to explore the transition between both instability modes in more detail.

We addressed the problem by using three methods for the simplest two-layer system.

First, the analytical perturbation method, which is valid for the onset of both types of

instability, is used to derive a ’phase-diagram’ discriminating different modes of defor-

mation. Second, numerical simulations were performed to test the applicability of the

phase diagram and to study the geometries that develop during the nonlinear finite

amplitude stages. Finally, we calculated and compared the patterns of finite strain,

which geologists could hopefully use to distinguish the different deformation modes

from field observations.

3.4.1 Method

In order to get insight in the transition between diapirism and buckling modes, the

simplest model consists in a layer of high viscosity and density over a layer with lower

viscosity and density (see Fig. 3.4). The system is subjected to layer-parallel, pure-

shear background deformation at a constant strain rate. Gravity is present. The bot-

tom boundary is rigid (no-slip condition) and the top is a fast redistribution boundary

(no stress condition on the top boundary kept flat throughout experiments). Rheology

is assumed to be linearly viscous. With this setup, a standard perturbation method

[e.g. Smith, 1977, Fletcher, 1977] was employed to derive an analytical solution that
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Figure 3.4: Setup used in this work. A layer of high viscosity and density lies over a
layer with lower viscosity and density. The system is subjected to layer-parallel, pure-shear
background deformation at a constant strain rate. Gravity is present. The bottom boundary
is rigid and the top is kept flat. Symbols as in the text.

describes the growth rate of the layer interface as a function of its wavelength, density-

and viscosity-structure and the thickness of both layers (see Appendix). The complete

analytical solution is rather complicate and grants only limited insight on the control-

ling parameters. Therefore, analytical solutions regarding the dominant wavelength

and growth rate were obtained for several end-member cases. For instance, an expres-

sion for dominant growth rate and wavelength was derived in the case of thin-layer

diapirism by setting the background strain rate to zero and making the lower layer

much thinner than the upper layer. The result obtained in this way is similar as the

result that was derived in section 3 on the basis of dimensional analysis (Equations

3.18 and 3.19).

3.4.2 Phase diagram: folding versus diapirism

With the technique summarized above, eight deformation modes could be distin-

guished, each with a different expression of dominant growth rate and wavelength

(see Table 3.1 for scaling laws). These deformation modes are displayed in a two-
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dimensional phase diagram (Fig. 3.5) using two non-dimensional numbers, B and

Bdet, constructed on the basis of rheological and geometrical parameters. They are:

Bdet =

(
Hm

H

)
R− 1

3

B = 0.39ArR− 2
3 (3.20)

where R is the viscosity contrast (µ1/µ2) between the upper and the lower (matrix)

layer, respectively, H and Hm the thickness of the upper and lower layer, respectively,

and Ar the Argand number expressing the importance of gravity over the background

shortening rate [adapted from England and McKenzie, 1982]:

Ar =
(ρ1 − ρ2)gHm

2µ2ε̇BG

(3.21)

Note that this definition of the Argand number differs from the original definition

[England and McKenzie, 1982]: Ar = ρ1

ρ2

(
1− ρ1

ρ2

)
ρ1gH

µ1v0/H
, where v0 is the indentation

velocity. Equation 3.21 also differs from the definition of [Schmalholz et al., 2002], who

define Ar = ∆ρgH
2µ1ε̇BG

, where ∆ρ is the density difference between the material above

(air or water) the high-viscous plate and the material below the plate. This point

emphasises that the definition of the Argand number is problem related. With equation

(3.21), gravity dominates over compression if the Argand number (and therefore the

B number) is large and one expects diapiric-type structures. On the other hand, low

Argand numbers indicate folding or homogeneous thickening modes.

Contours of the dominant growth rate and dominant wavelength versus B and Bdet

are shown in Figure 3.5. The curves of iso-dominant wavelength and/or iso-growth

rate have different slopes in different regions of the diagram, thus defining eight fields.

The mechanical ’phase-boundaries’ are the locus of the inflexion points where slopes

change. Inside each field, the growth rate of the given mode is larger than the growth

rate of any of the other seven modes.

It can be readily seen that diapiric modes (gravity dominated) roughly occur for

B > 1 and folding modes (where compression dominates) exist when B < 1. Somewhat

expectedly the transition depends largely on the Argand number. Three fields cover

the diapiric modes:

1. Thin-layer diapirism, when the interlayer boundary is very close to the bottom,

no-slip boundary.
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Figure 3.5: a) Growth rates normalized over the background strain rate as a function of
B and Bdet plotted for an R-value of 100. Thick lines indicate phase boundaries that were
calculated on the basis of simplified dominant wavelength and growth rate expressions. b)
Contours of dominant wavelengths normalized over the total thickness of the system as a
function of B and Bdet, plotted for an R-value of 100. Switching from a detachment folding-
mode to a detachment-diapirism mode, by changing B but keeping Bdet at a constant level,
the dominant wavelength remains almost unchanged. The insets show that the growth rate
curve for folding with erosion has two peaks. The second peak becomes larger than the first
one in the detachment-erosion field.



68 CHAPTER 3. FOLDING VERSUS DIAPIRISM

Deformation Mode Dominant wavelength Dominant growthrate

Thin-layer folding λtlf = 4.46H
(

Hm

H

)
R

1
3 qtlf = 0.86R− 1

3 ε̇BG

Detachment folding λdf = 3.3H
(

Hm

H

) 1
2 R

1
6 qdf = 0.86

(
Hm

H

)
R

1
3 ε̇BG

Matrix folding λmf = 4.45HR
1
3 qmf = 0.86R

2
3 ε̇BG

Detachment erosion λde = 6.30H
(

Hm

H

) 3
4 R

1
4 qde = 0.18

(
Hm

H

)
R

1
12 ε̇BG

Matrix erosion λme = 5.24H
(

Hm

H

)
qme = 0.60Rε̇BG

Thin-layer diapirism λtld = 2.795H
(

Hm

H

)
R

1
3 qtld = 0.28ArR− 2

3 ε̇BG

Detachment diapirism λdd = 3.86H
(

Hm

H

) 1
2 R

1
6 qdd = 1

3
Ar

(
Hm

H

)
R− 1

3 ε̇BG

Matrix diapirism λmd = 2.75H
(

Hm

H

)
qmd = 1

3
Arε̇BG

Table 3.1: Scaling laws for the different deformation modes in Fig. 3.5, derived using the
perturbation method described in the Appendix. The growthrate of two deformation modes
is equal at their boundary (e.g. qdd = qmd). Thus the scaling laws given here can be used to
compute the position of phase boundaries.

2. Detachment diapirism, when the interlayer boundary is further up from the bot-

tom, which still influences the dynamics of the system.

3. Matrix diapirism, when presence of the stiff but thin top layer exerts no influence.

Five fields cover the folding modes. With increasing Bdet numbers they are:

1. Thin layer folding, when the interlayer boundary is very close to the bottom

boundary. In this case, growth rates are slower than the background shortening-

rate. Folds will still grow, but at such a slow rate that they will not become

discernable during the later stages.

2. Detachment folding, when the interface is further up from the bottom, but the

influence of the bottom is still felt. The low-viscosity lower layer acts like a thin

channel and the growth rate of the interlayer boundary is limited by the rate

with which viscous fluids can flow through this channel. Therefore growth rates

increase with increasing channel thickness (ie. increasing Bdet number)

3. Matrix folding, when the lower layer is thick enough to act like an infinite matrix.

Growth rates depend solely on the viscosity contrast and background strain rates.
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4. Detachment erosion, which has significantly longer dominant wavelengths than

the matrix folding field. The growth rates are sensitive to viscosity contrast,

matrix thickness and background strain rate.

5. Matrix erosion, which has no dependency on the thickness of the top stiff but

thin layer.

In light of previous work [Schmalholz et al., 2002], the folding modes 1, 2 and 3 were

expected. The new modes 4 and 5 are due to the action of erosion. The growth rate

curves of these two modes draw attention because they have two maxima. For small

Bdet numbers (modes 1-3), the first maximum always dominates. However, if Bdet

becomes larger than 101.2 (for R=100), the second peak overtakes the first one (insets

of Fig. 3.5B). This is accompanied by a sudden increase in dominant wavelength.

Not all of the eight fields on the phase diagram are expected to occur in nature.

The thin-layer folding field is one example. The growth rate being always smaller than

background shortening implies that the system will deform homogeneously rather than

produce an instability. The erosion-modes that require very large thickness ratios is

another example. Consider for example a 50 km thick crust. If a viscosity contrast

of 100 is assumed between a strong upper crust and a weak lower crust, the thickness

of the strong layer should be around 350 m in order to fall within the detachment-

erosion mode (log10(Bdet) = 1.5). Estimates of effective thickness of the upper crust

for Central Asia vary between 6 and 12 km [Schmalholz et al., 2002]. Owing to these

limits, only 5 fields are further considered in the current study (Fig. 3.6A). Changing

the viscosity contrast affects the topology of the phase diagram (Fig. 3.6B). The

boundaries between the diapiric modes 2 and 3 and between the folding modes 2 and

3 are independent of the viscosity contrast, a fact due to the definition of B and Bdet.

The other boundaries move across the diagram so that the other fields widen with

increasing viscosity contrast.

3.4.3 Discussion

The first point extractable from the phase-diagram (Fig. 3.5) is that the detachment

folding and detachment diapirism modes have very similar dominant wavelengths. For

example, consider a model with given layer thicknesses and viscosity contrast resulting

in log10(Bdet = −1). If compression is very slow (i.e. ε̇BG → 0) the Argand number
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Figure 3.6: a) Phase diagram for crustal deformation for a viscosity contrast of R = 1000
as a function of B and Bdet. Not all phase fields are likely to occur at crustal scale, because
some require a very thin layer on a very thick matrix (detachment erosion and matrix erosion
fields) and others have a growth rate smaller than the background shortening rate (thin-
layer folding) and will therefore not produce finite amplitude domes. b) Topology of the
phase diagram as a function of viscosity contrasts. The non-dimensional numbers B and Bdet

where chosen in such a way that the boundary between the four fields that are thought to
be relevant for the crust is independent on the viscosity contrast. The other fields increase
in size with increasing viscosity contrast.
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is very large (Ar → ∞) and, consequently, the B number is large. A diapiric, purely

gravity driven deformation mode will develop with a given wavelength (Fig 3.5B). If

the system now suddenly undergoes compression, the Argand number and therefore the

B number decrease and detachment folding becomes favored. However, the dominant

wavelength remains unchanged. Instabilities that started forming in the diapiric field

are likely to continue amplifying in the folding mode without discernable consequences

on the wavelength. This observation may help understanding site and shapes of salt

diapirs that pierce periodical folds of the Zagros Mountains [Alavi, 1994]. A second

point is that the shapes of both diapirs and folds developing while being instantaneously

eroded have two-dimensional profiles that look alike; both have chimney (cusp) shapes

with very steep walls and narrow heads. The three-dimensional shape of the resulting

structures is currently only partially understood for diapirs. 3D tubular diapirs amplify

slightly faster than two-dimensional (linear, wall-like) diapirs at finite amplitudes [Kaus

and Podladchikov, 2001]. Therefore, diapirs tend to form finger-like (or in map-view

circular) intrusions. Three-dimensional folding, on the other hand, has so far only been

studied in the linear initial stages, for a layer embedded in an infinite matrix [Fletcher,

1991, 1995]. The effects of both finite amplitude and a detachment layer remain to

be examined. At the moment, we can only speculate that existing large-amplitude

three-dimensional folds will continue amplifying in the same detachment folding mode.
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3.5 Numerical simulations

The boundaries separating the different deformation modes are relatively sharp (Fig.

3.5), which points to rapid changes in deformation mechanism from one mode to the

next. However, the analytical perturbation method used to derive the diagram has an

important shortcoming in that it implies infinitely small perturbations of the interface

and, therefore is valid only for starting conditions. Linearization is too strong an

assumption for understanding geological structures that accumulate large amounts of

strain. We performed numerical simulations to study the importance of nonlinear finite

amplitude effects and, therefore, to estimate the validity of the analytical predictions.

3.5.1 Numerical technique

We used the code GANGO, which is a two-dimensional Eulerian finite-difference/spectral

method that builds on the technique described in [Schmalholz et al., 2001]. It solves

the momentum equations for the slow motion of rocks on geological timescales. In-

compressibility is assumed. The governing partial differential equations are solved on a

two-dimensional domain that uses a spectral approximation in the horizontal direction

and a conservative finite difference approximation in the vertical direction. Time step-

ping is done with an implicit algorithm in order to accurately track the highly unstable

stages of the initiating instabilities. The interface between layers of different, sharply-

varying material parameters is described by a marker line that eliminates numerical

diffusion. The two-layer initial setup is the same as used for the analytical method

(Fig. 3.4). It mimics a high-viscosity, high-density layer, analogue to the upper crust,

resting on a low-viscosity, low-density layer representing the deeper crust. The density

inversion could represent, for example, magma-rich migmatites or salt at depth. Rheol-

ogy is linearly viscous and constant within each layer. Horizontal boundary conditions

are assumed to be periodic on top of a background pure-shear velocity field. A no-slip

boundary condition was set at the bottom boundary, fast redistribution is allowed on

the top boundary. This means that the topography created at the surface is instanta-

neously flattened, depressions being filled with a high-viscosity, high-density material

similar to that of the upper layer. Thus the modelling particularly concerns regions

of very fast erosion and sedimentation, as it is suggested in the Himalayan syntaxes

[Burg and Podladchikov, 2000].
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3.5.2 Comparison between numerics and analytics

In order to check the accuracy of the code we numerically calculated growth rates by

imposing different sinusoidal perturbations of small amplitude at the interlayer bound-

ary and recording the growth rate under four different deformation modes: detachment

and matrix diapirism and detachment and matrix folding. The analytical and numeri-

cal results show a good agreement (Fig. 3.7). To study the nonlinear finite amplitude

effects, growth rates were also calculated for sinusoidal perturbations with larger initial

amplitudes. In this case, the growth rate curves are similar in shape, but the magni-

tudes are generally smaller. Therefore, the dominant wavelength of finite amplitude

instabilities is close to the wavelength predicted by the analytical solution. Accordingly,

the phase diagram can be applied to large strain cases.

3.5.3 Geometries developing at finite amplitude stages

Previous numerical simulations have demonstrated that an initially horizontal layer

perturbed with random noise develops structures whose wavelength is close to the dom-

inant wavelength [e.g. Schmalholz and Podladchikov, 1999, Kaus and Podladchikov,

2001]. Exceptions to this general rule can occur if the amplitude of the noise is large

compared to the thickness of the layer [e.g. Mancktelow, 1999], if a large non-dominant

initial perturbation is present [e.g. Schmeling, 1987, Kaus and Podladchikov, 2001], or

if the dominant growth rate is smaller than the background strain rate. Simulations

starting with an initial low-amplitude random noise performed for four deformation

modes (not shown here) indeed developed into structures with a wavelength close to

the dominant one. To study the geometries developing during finite amplitude stages,

it is therefore sufficient to start with a sinusoidal perturbation of dominant wavelength.

Results of such calculations are displayed in Figure 3.8 for which, in addition to the

B and Bdet numbers, the initial perturbation amplitude was varied. Figure 3.9 shows

simulations for the same B and Bdet parameters with different viscosity contrasts. The

resulting structural characteristics can be summarized as follows:

• Thin-layer diapirism to detachment diapirism: a tendency to form balloon-on-

a-string diapirs [Podladchikov et al., 1993] is observed, both at small and large

initial amplitudes and viscosity contrasts. After the diapir reaches the surface,

its form changes to a stock or chimney-like shape.
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Figure 3.7: Comparison of analytical growth rates with numerically determined growth
rates for 4 different deformation modes. In all cases the numerically determined growth rates
with a small amplitude perturbation are very close to analytical results. Cases where the
initial perturbation has a larger amplitude generally result in smaller growth rates, while the
dominant wavelength remains almost unchanged.

• Detachment diapirism: Simulations with a viscosity contrast of 3000 formed al-

ways chimney-like geometries after the low-viscosity low-density material reached

the surface. The simulation with a lower viscosity contrast formed a balloon-on-

a-string diapir. The smaller dominant wavelength and thickness ratio in this

simulation compared to other cases can explain this difference. The interface is

far below the eroding top surface during the initial stages and the shape of the

diapir evolves as if the top were a no-slip or free-slip boundary [e.g. Woidt, 1978].

Additional simulations showed that, as a rule-of-a-thumb, chimney-like diapirs

form if the dominant wavelength is at least 4-5 times larger than the thickness of

overburden.
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• Matrix diapirism: All simulations evolve towards chimney-like structures.

• Thin-layer folding to detachment folding : Dynamic growth rates are too small to

have active amplification of the interlayer surface whose change in shape is due

to the overall pure-shear shortening.

• Detachment folding : The simulation with a small initial amplitude and large vis-

cosity contrast has active amplification, but insufficient to reach the surface. The

thereby developed ’hidden’ chimney-like structure would be difficult to observe

in orogenic belts. Simulations that started with a larger initial amplitude, on the

other hand, produced structures able to reach the surface, a stage after which

the geometry evolves towards chimney-like structures. Simulations with a smaller

viscosity contrast have smaller growth rates and no active amplification.

• Matrix folding : All simulations reach the surface and form chimney shapes similar

to those in the matrix-diapirism field.

In conclusion two different dome-like geometries can be experimented: (1) the classical

diapir structure, which forms if very thin layers are present, and (2) chimney-like

structures, which form both in folding- and diapiric deformation modes.

3.5.4 Dynamics of dome-formation

Numerical results show that the final stage morphology of both diapiric and folding de-

formation modes are very similar, at least regarding the shape of the interface between

different material properties. The aim of this section is to investigate differences in the

dynamic evolution of buckling and diapiric deformations. Figure 3.10 shows snapshots

in the evolution of a simulation in the detachment diapirism field and in the detach-

ment folding field. Comparisons are made for the stream function and effective stress

[second invariant of the deviatoric stress tensor, see e.g. Ranalli, 1995]. During the first

two stages, before the growing structures reach the surface, the velocity patterns are

very similar. Both diapirs and folds behave as if the low-viscosity material were flowing

through a thin channel towards the centre of the dome. However, differences exist in

the magnitude and distribution of effective stress: much larger values are built up in

the folding mode, which is due to larger background strain rates set in this simulation.
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Figure 3.10: Results of numerical calculations, showing different snapshots of a) a sim-
ulation in the detachment diapirism field (Bdet = 10−1.4, B = 102) and b) a simulation in
the detachment folding field (Bdet = 10−1.4, B = 10−2). Colours indicate stream function
(left) and effective stress (right). Active velocity (i.e. velocity minus background pure-shear
velocity) is indicated by white arrows. The viscosity contrast R is set to 3000 and the initial
amplitude A0 is 0.1 times the height of the box. During the initial stages, the main differ-
ence between folding and diapirism is the magnitude of effective stress in the high viscous
layer, which is due to the fact that the background strain rate is larger in the folding case.
Remarkably the active velocity field and the geometry of the interface are similar for both
cases. Only after the low viscosity/low density material has reached the surface and is being
eroded, the deformation patterns changes significantly: whereas the diapir continues to move
upward, with a dramatically increased rate, the material in the core of the fold mainly follows
a downward movement (gets squeezed away). exx-shortening in the horizontal (x) direction.
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During the last stage, after the interlayer boundary reached the surface, considerable

differences occur in the velocity field. Upward flow in the centre of the eroding dome

continues in the diapiric mode, with acceleration due to the fact that velocities are no

longer controlled by the highest but by the lowest viscosity region. Folds, however,

change the velocity pattern from upwards movement to downward squeezing of low

viscosity material near the centre of the dome. This is accompanied with a decrease

in absolute velocity, and can be explained since the dominant mechanism changes

from a folding instability to flow-between-rigid-plates. If this channel has a wedge-

shaped form, the material gets squeezed outwards rather than through the channel.

Simulations within the matrix fields confirm these results: initial velocity patterns are

similar, but patterns change once erosion of the dome material starts.

Chimney-like structures are appealing features to explain the formation of isolated

domes because the so-called dominant wavelength becomes very large under fast-erosion

conditions. These two aspects, along with the occurrence of steep limbs, are reminiscent

of the Himalayan Syntaxes. However, the bulk form and distribution are scantily

discriminating. Therefore, we tried to establish further discrimination between diapirs

and folds from the strain field in and around domes.

3.6 Strain in and around domes

In order to predict the strain distribution in and around domes, a feature observable

to geologists, a passive grid was inserted in the numerical simulations and moved with

the calculated velocity distributions. Results are displayed in the form of finite strain

ellipsoids for an intermediate stage in figure 3.11 and for a late stage in figure 3.12,

which are chosen for their likeliness in the shape of the interface. Expectedly, the

largest strains are recorded within the low viscosity materials. Diapir simulations show

a normal sense of shear towards the diapir-overburden interface. The matrix-folding

simulations show a reverse sense of shear towards this interface, which is in agreement

with fold vergence and senses of shear geologists have been using (Fig. 3.14). However

the detachment folding simulations behave opposite to expectations with a normal

sense of shear at the interface. This is explained by the fact that the thin viscous

channel largely controls deformation and, indeed, the strain pattern resembles that

of viscous pipe flow. Only after extrusion of low-viscosity material the finite strain
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pattern starts switching from normal to reverse sense of shear near the centre of the

dome, whereas in diapirs the pattern remains relatively unchanged. We conclude that

the present-day structural techniques applied for distinguishing diapiric domes and

folds are ambiguous if detachment folding takes place during fast erosion, and that

domes displaying extensional structures at their periphery do not necessarily reflect

extension.

3.7 Discussion

We presented results for a two-layer system with simple Newtonian rheology, which is

a fair approximation of the creep behavior of salt and salt and sediments. However,

rocks generally have a brittle rheology and/or a power-law rheology known to be depth-

dependent through the strong temperature effect on the constitutive laws [e.g. Ranalli,

1995]. In the light of previous studies on folding and diapirism, we will first comment

on the influence of power-law and brittle rheologies on our results. The main effect of

power-law rheology on the folding instability is a marked increase in growth rates and

a small decrease in dominant wavelength [e.g. Schmalholz et al., 2002, Smith, 1977, see

also equations 3.9 and 3.10]. The same effect was also recognised for diapirs, around

which the deformation aureole becomes smaller with increasing powerlaw-exponent

[Weinberg and Podladchikov, 1995].

Temperature dependency of viscosity may have an influence on the results presented

here which are, strictly spoken, only valid for quasi-adiabatic conditions. Thermal

diffusion is known to be more effective if (1) growthrates of the instabilities are low

and (2) the instability wavelength is small [e.g. Conrad and Molnar, 1997]. Both

conditions may exist in the thin-layer folding and thin-layer detachment modes (Fig.

3.5), and would slow down the growth of domes. Since in crustal cases, the viscosity

differences are related to composition differences, the overall thermal effect are likely

to be minor at initial stages. During evolved stages however, cooling may stop domes

from rising, an effect which will be more pronounced for short-wavelength structures.

Nonlinear feedback mechanisms such as those due to shear heating [e.g. Regenauer-

Lieb and Yuen, 2003] may also modify the finite amplitude structures presented here.

Inspection of figures 3.11 and 3.12 indicates that shear-heating may be most efficient for

the detachment-folding mode, where it would potentially transfer the two-layer system
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Figure 3.11: Strain patterns around diapirs (left) and folds (right) during intermediate
stages, when the low viscosity material has not reached the surface yet. The following pa-
rameters were used: a) log10(Bdet) = −1.4, log10(B) = 2, R = 3000, A0/(H + Hm) = 0.1,
b) log10(Bdet) = −0.05, log10(B) = 2, R = 3000, A0/(H + Hm) = 0.1 c) log10(Bdet) =
−1.4, log10(B) = −2, R = 3000, A0/(H + Hm) = 0.1 and d) log10(Bdet) = 0.05, log10(B) =
2, R = 3000, A0/(H + Hm) = 0.01. Both detachment folding and detachment diapirism show
a very similar strain pattern, which resembles the pattern classically attributed to diapirs
only.
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Figure 3.12: Strain patterns around diapiric structures (left) and folding structures (right)
during late stages, when the low viscosity material has reached the surface and is being eroded.
All parameters are the same as in figure 3.11. Matrix folding and matrix diapirism still have
opposite senses of shear close to the boundary. Detachment diapirism and detachment folding
have the same sense of shear close to the interface. However the detachment folding sense-of
shear flips towards the centre of the anticline.
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Figure 3.13: Structural characteristics of a cylindrical diapir and a cylindrical buckle-
anticline; adapted from [Dixon, 1987]. This clasical morphology is consistent with matrix
diapirism and folding (Fig. 3.12).
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Figure 3.14: Structural characteristics of a diapir and a buckle-anticline submitted to in-
stantaneous erosion as modeled in this work. This morphology refers to detachment diapirism
and folding (Fig. 3.12).
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into a three layer system with a weak shearzone intercalated between the low-viscous

matrix and the highly-viscous overlying layer. The consequences of such a zone on

the geometry and dynamics of dome formation are currently unknown, and should be

addressed in future studies.

A brittle rheology has only minor effects on salt diapirism [Poliakov et al., 1996] in

the absence of compression or extension. Gerbault and coauthors [Gerbault et al., 1999]

also argued that the brittle rheology has a relatively minor effect on lithospheric-scale

folding. Zuber [1987] and Schmalholz et al. [2002] have considered the effect of a depth-

dependent rheology. For this purpose, they redefined the thicknesses (H and Hm) of

the layers, yet the results remained similar to those obtained with depth-independent

rheologies. Accordingly, one may expect that power-law and brittle rheologies will

change the definitions of the two non-dimensional numbers B and Bdet but the main

results of this paper, as first order strain patterns and phase diagram, will not change

significantly.

A point worth discussing again is the fact that natural folds are often non-periodic

on a large scale, whereas they appear to be rather periodic on the outcrop scale.

The simulations presented in this paper shed some light on this process, by showing

that instabilities starting from a larger initial perturbation grow faster. Recent work

on viscoelastic folding pointed out that elasticity triggers more localized folding [e.g.

Schmalholz and Podladchikov, 1999]. Localization is also obtained if geometrical (with

a non-dominant wavelength and finite amplitude) and/or rheological heterogeneities

are present. It is obvious that a mountain chain like the Himalayas contains such

heterogeneities at the onset of continental shortening (e.g. sutures, igneous intrusions

etc.). Therefore, large-scale folding, especially during continental collision, may natu-

rally be localized. Folding of the oceanic lithosphere, on the other hand, is expected

to be much more periodic, since the oceanic lithosphere is more homogeneous. It is

thus logical that regular undulations in topography, gravity signal and Moho-depth

observed in the Central Indian Basin over hundreds of kilometers [e.g. Zuber, 1987,

Gerbault, 2000, and references therein], are periodic buckle folds. It is also evident

that three-dimensional constraints linked to corner effects in original bends of conti-

nental boundaries [e.g. Brun and Burg, 1982] will force fold localization.
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3.8 Conclusions

Simplified analytical calculations result in a phase diagram separating different modes

of deformation as a function of two non-dimensional numbers: B and Bdet. Five modes

of deformation are important in non-extensional, crustal-scale doming, ranging from

diapiric to folding modes. Numerical simulations further demonstrated that the evolved

diapirs and folds are similarly looking chimney-like, rather isolated, domes and erosion

plays a key role in this isolation. The strain distribution around these domes allows

the discrimination of folds versus diapirs only in the case where Bdet > 1, implying

that the low-viscosity lower layer is relatively thick. In the other cases, the use of

asymmetric structures can erroneously point to a diapiric origin even if the dome has

formed in compression only. If shortening continues after the core of the dome is eroded,

important differences will be observed between diapirs and folds: the core of diapirs

continues rising whereas folds develop a core syncline reflecting downward movement

in the center of the dome.
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3.10 Perturbation analysis

For geological processes inertial terms can be ignored and force equilibrium in a two-

dimensional case, ignoring the effect of gravity, is given by:

∂σxx

∂x
+

∂σxz

∂z
= 0

∂σxz

∂x
+

∂σzz

∂z
= 0 (3.22)

In addition one assumes that material is incompressible:

∂vx

∂x
+

∂vz

∂z
= 0 (3.23)
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Rheology is linearly viscous (with a constant viscosity µ inside each layer) and given

by:

σxx = −p + 2µ
∂vx

∂x

σzz = −p + 2µ
∂vz

∂z

σxz = µ

(
∂vx

∂z
+

∂vz

∂x

)
(3.24)

where p is pressure. Inserting equations (3.24) into the force-balance equations (3.22)

gives:

−∂p

∂x
+ 2µ

∂2vx

∂x2
+ µ

∂

∂z

(
∂vx

∂z
+

∂vz

∂x

)
= 0

−∂p

∂z
+ 2µ

∂2vz

∂z2
+ µ

∂

∂x

(
∂vx

∂z
+

∂vz

∂x

)
= 0 (3.25)

Pressure can be eliminated by taking the derivative of the first equation versus z and

subtracting the derivative of the second equation versus x:

2µ

(
∂3vx

∂z∂x2
− ∂3vz

∂x∂z2

)
+ µ

(
∂2

∂z
− ∂2

∂x2

)(
∂vx

∂z
+

∂vz

∂x

)
= 0 (3.26)

We split the velocity in a sinusoidal perturbed part and a background part, due to the

pure-shear shortening.

vx = ṽx(z)exp(Iωx)− ε̇BGx

vz = ṽz(z)exp(Iωx) + ε̇BGz (3.27)

where I =
√−1 and ε̇BG is the background pure-shear strain rate assumed to be

constant over the model. Inserting equations (3.27) into equation (3.26), using the

incompressibility constraint (3.24) and dividing by µIexp(Iωx)/ω yields a 4th order

ODE for ṽz(z):

∂4ṽz(z)

∂z4
− 2ω2∂2ṽz(z)

∂z2
+ ω2ṽz(z) = 0 (3.28)

A general solution of equation (3.28) has the form:

ṽz(z) = Ae(ωz) + Bze(ωz) + Ce(−ωz) + Dze(−ωz) (3.29)
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where A,B, C and D are four constants. Having expressed ṽz(z), we can determine

all other velocities, stresses and the pressure from equations (3.23), (3.24) and (3.27),

respectively.

The studied case is a 2-layer system (see Fig. 3.4). Within each layer equation

(3.29) applies. Thus there are 8 unknown constants that need 8 equations. Two of

these equations apply at the no-slip lower boundary (z = −Hm):

ṽlo
z (−Hm) = 0

ṽlo
x (−Hm) = 0 (3.30)

Two equations apply at the upper boundary (z = H), where an infinitely fast erosion

boundary condition is set:

σ̃up
zz (H) = 0

σ̃up
xz (H) = 0 (3.31)

At the interface between the layers (z = 0), continuity of velocity is required. After

making a first order Taylor expansion around z = 0, the condition can be written

ṽlo
x (0)− ṽup

x (0) = 0

ṽlo
z (0)− ṽup

z (0) = 0 (3.32)

Stresses across the interface should also be continuous:

σ̃lo
xz(0)− σ̃up

xz (0) = 4ε̇BG

(
µ1 − µ2

) ∂η

∂x
σ̃lo

zz(0)− σ̃up
zz (0) =

(
ρ1 − ρ2

)
gη (3.33)

where η = A(t)cos(ωx) is the sinusoidally perturbed interface and A(t) the perturbation

amplitude which grows exponentially with time. The growth on top of the background

pure-shear thickening is given by:

A(t) = A0e
(qt) (3.34)

where q is the growth rate of the interface. After noting that ∂η
∂t

= ṽz(0) one can derive

that η = ṽz(0)
q

. Substituting this relationship in equations (3.33) yields:

σ̃lo
xz(0)− σ̃up

xz (0)− 4ε̇BG

(
µ1 − µ2

)
ω

ṽup
z (0)

q
= 0

σ̃lo
zz(0)− σ̃up

zz (0)− (
ρ1 − ρ2

)
g
ṽup

z (0)

q
= 0 (3.35)
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equations (3.30), (3.31), (3.32) and (3.35) thus are 8 equations for 8 unknowns (A-F).

They can be written in matrix form:

AC = R (3.36)

where A is an 8 by 8 matrix, containing coefficients in front of the unknowns (A-F),

C is an 8 by 1 vector containing the 8 unknowns, and R is an 8 by 1 vector, which is

filled with zeros in the current case.

The system (3.36) has a nontrivial solution only if det(A)=0. In practice this

tedious task is done by using the symbolic manipulation package MAPLE, but even in

this case the analytical solutions are complicated. An alternative method was described

in Smith [1977], who determined the growth rate q numerically by inserting a random

value for q in A and iterating until the det(A) is zero. This gives the growth rate for a

given wave number and for given physical parameters. This task can be done using the

linear algebra package MATLAB. By scanning ranges of ω’s, the fastest growth rate is

found. Analytical expressions of the maximum growth rate versus physical parameters

were found by calculating growth rates for limiting cases (e.g. setting the background

strain rate to zero gives pure diapiric modes). These analytical expressions were then

compared to analytical expressions that were derived for simplified cases (e.g. the

formula for dominant wavelength and growth rate for matrix folding was compared to

an analytical solution that was derived for the case of folding if a layer resting on an

infinite matrix). Once expressions for growth rates are known for every deformation

mode, the boundaries between deformation modes can be calculated by requiring that

the growth rate of two adjacent phases are equal at the phase boundary.
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Chapter 4

Initiation of localized shear in
visco-elasto-plastic rocks.

Abstract Shear-localization is a process of primary importance for the onset of

subduction and the evolution of plate-tectonics on Earth. In this chapter we focus on

a model in which shear-localization is initiated through shear-heating. The rheology

employed is linear Maxwell viscoelastic with von Mises plasticity and an exponen-

tial dependence of viscosity on temperature. Dimensional analysis reveals that four

non-dimensional parameters control the initiation of shear-zones. The onset of shear-

localization is systematically studied with 0-D, 1-D and 2-D numerical models, both

under constant stress and under constant velocity boundary conditions. Mechanical

phase-diagrams demonstrate that six deformation modes exist under constant velocity

boundary conditions. A constant stress boundary condition, on the other hand, ex-

hibits only two deformation modes (localization versus no-localization). Scaling laws

for the growth rate of temperature are computed for all deformation modes. Numeri-

cal and analytical solutions demonstrate that diffusion of heat may inhibit localization.

Initial heterogeneities are required to initiate localization. The derived scaling laws are

applied to Earth-like parameters. For a given heterogeneity-size, stable (non-seismic)

localization only occurs for a range of effective viscosities. Localization is inhibited

if viscosity is smaller then a minimum threshold, which is a function of the hetero-

geneity size. Two-dimensional models are presented for a lithosphere subjected to

homogeneous extension with an initially circular inclusion. The models demonstrate

that both plasticity and elasticity are required to form lithospheric-scale shear-zones.

The simplified rheological model is compared with a more realistic, and more complex
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model of olivine that takes diffusion-, powerlaw and Peierls creep into account. Good

agreement exists between the models. The simplified model proposed in this study

thus reproduces the main physics of ductile faulting. Two-dimensional late-stage sim-

ulations of lithospheric-scale shear-localization are presented that confirm the findings

of the initial stage analysis.

4.1 Introduction

Strain-localization is one of the long-lasting research topics in theoretical geodynamics.

There are several motivations for this. First, earthquakes are frequently related to large-

scale, plate bounding fault-zones. The formation of faults in the upper 10-15 km of the

lithosphere is most likely a result of brittle fracture [Scholz, 2002]. This process is often

modeled with simple Mohr-Coulomb friction or Byerlees law [Brace and Kohlstedt,

1980] combined with elastic or viscoelastic, distributed deformation [e.g. Poliakov et al.,

1994, Lavier et al., 2000]. Once a brittle fault-zone has formed, continuing deformation

on the fault is governed by the rheology of the fault gouge. Repeating earthquake cycles

can occur if the fault gouge has the ability to both weaken and strengthen depending

on the applied velocity and/or stress. Rheological models that have this ability include

the rate and state-dependent friction model [Dieterich, 1979, Ruina, 1983], viscoelastic

damage mechanics [e.g. Lyakhovsky et al., 1997, submitted 2004], or dynamic grain-

growth models [Montesi and Hirth, 2003].

Whereas the occurrence of earthquakes in the upper brittle part of the lithosphere

appears to be relatively well understood, the presence of earthquakes deeper in the

lithosphere is more puzzling. Laboratory experiments indicate that the brittle strength

of rocks should only apply for the upper 10-20 km. Deeper parts of the oceanic and

continental lithosphere, which are able to sustain significant differential stresses, are

most likely dominated by ductile deformation mechanisms [Kohlstedt et al., 1995].

Experiments on olivine indicated that under large confining stresses, the deformation

mechanism of olivine changes from diffusion creep or dislocation creep to the so-called

Peierls creep mechanisms, which effectively limits the maximum differential stress of

the rock sample [e.g. Goetze and Evans, 1979]. Qualitatively, the Peierls mechanism

can be regarded as von Mises plasticity, in which the yield stress is weakly dependent on
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strainrate and temperature. It is well-known from engineering studies on metals that

von Mises plasticity does not lead to spontaneous localization of strain in small bands;

it rather tends to form a broad band of plastic deformation (so-called metal plasticity).

Thus, additional mechanisms are required to explain the formation of shear-zones (and

earthquakes) in the ductile, high strength part of the lithosphere. One possibility that

has been explored is the self-lubrication model in which effective viscosity drops both

with stress and strainrate [e.g. Bercovici et al., 2001]. Another possibility is the shear-

heating model in which viscosity is reduced due to increased temperature [e.g. Yuen

et al., 1978].

The problem of shear-localization in the non-brittle part of the lithosphere has

gained significant attention from the mantle-convection community over the last decade.

This attention is mainly driven by the fact that early models of mantle convection with

a realistic temperature-dependent viscosity [Moresi and Solomatov, 1995], did not de-

velop plate-tectonic behavior but instead lead to the formation of a one-plate planet.

While this result may be applicable for Venus, it is obviously not relevant to the Earth.

Subsequent work showed that weak plate boundaries,initially prescribed in the models,

are required to develop plate tectonic behavior. Self-consistent models of plate-like be-

havior, in which fault zones form spontaneously from the rheology, have mainly concen-

trated on damage-like self-lubricating models [e.g. Bercovici, 1993, 1996, Tackley, 1998,

2000c, Bercovici, 2003, Auth et al., 2003, Ogawa, 2003] or on pseudo-plastic yield stress

rheologies [Trompert and Hansen, 1998, Tackley, 2000a,b]. The pseudo-plastic rheolo-

gies seem to perform slightly better in generating plate-like behavior with mid-oceanic

ridges [Tackley, 2000a] and subduction in 3D geometries. However, these models still

face some drawbacks. First, they should be regarded as being ad-hoc (although more

recent developments have derived the governing equations from first-principles see e.g.

Bercovici et al. [2001]). Second, plate-like behavior occurs for a very small parameter

range only, and for yield-strengths that are up to an order of magnitude lower than

laboratory-derived measurements [Tackley, 2000b]. Asymmetric subduction does not

form spontaneously and the amount of strike-slip motion (e.g. like on the San Andreas

fault) in these models is lower then on the Earth. Third, the pseudo-plastic rheology

is instantaneous and has no memory effect; once the applied strainrate is reduced the

faults disappear. In Auth et al. [2003] 2D numerical results have been reported which

employed a more sophisticated damage rheology formulation, and that did result in
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asymmetric subduction. However the applicability of their models to 3-D cases is still

to be tested.

A different line of research has focussed on the generation of lithospheric-scale shear-

zones by induced thermal weakening due to shear-heating. Early work [Turcotte and

Oxburgh, 1968, Yuen et al., 1978] on this instability demonstrated that it is possible

to generate a weak zone with this mechanism, but only under the presence of very

large stresses and under somewhat restrictive conditions of a constant thickness shear-

zone, whose boundaries are maintained at a constant temperature. If, on the other

hand, a heterogeneity is initially present shear-localization occurs more easily [Fleitout

and Froidevaux, 1980, Ogawa, 1987, Montesi and Zuber, 2002] but still requires rela-

tively large stresses (typically > 1000 MPa). In nature, the stress in the lithosphere is

limited by, for example, the Peierls creep mechanism. One-dimensional models of shear-

localization that incorporate laboratory-derived rheological laws demonstrate that the

Peierls mechanism generally inhibits shear-localization, unless a constant stress bound-

ary condition or large initial stresses are present [Kameyama et al., 1999]. Essentially

all models cited above have been developed for 0-D or 1-D cases and are thus ap-

plicable to study the evolution of temperature and strain rate on preexisting zones

of weakness. However, a different question, relevant in the context of self-consistent

plate tectonics models, is how these zones are created. Advances in this direction

have been made by Regenauer-Lieb and Yuen [1998], who demonstrated that quasi-

adiabatic shearzones develop in a pre-stressed lithosphere under extension if the shear-

zone is initiated by a notch-like initial heterogeneity [Regenauer-Lieb and Yuen, 1998].

These studies have been followed by work that concentrated on the effect of thermo-

mechanical coupling with plasticity and more complex rheologies, including water-

dependent diffusion creep, powerlaw creep and Peierls creep [Regenauer-Lieb et al.,

1999, Regenauer-Lieb and Yuen, 2000a,b, Regenauer-Lieb et al., 2001, Regenauer-Lieb

and Yuen, 2004]. Regenauer-Lieb et al. [2001] demonstrated that it is possible to gen-

erate an asymmetric lithospheric-scale shearzone by adding ∼ 10 km’s of sediments on

top of the oceanic plate, provided the material is governed by a ’wet’-rheology. This

conclusion has been confirmed in more recent work [Regenauer-Lieb and Yuen, 2004] in

which several thermal heterogeneities have been introduced in a lithosphere extended

at constant velocity.

These studies thus highlight the possibility of creating lithospheric-scale shear-zones
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with a mechanism consistent with current knowledge on rheology. However, drawbacks

of the mentioned studies are that they are numerically very expensive, require a com-

plex rheology with many parameters, and have ignored the mantle flow. Moreover, a

quantitative understanding of the parameters that control the initiation and the evo-

lution of ductile shearzones is not available. The focus of the current paper is to study

the initiation of a shear-zone in the framework of a somewhat simpler rheology then

that employed by Regenauer-Lieb and Yuen [1998]. The initiation phase is defined here

as the stage during which the temperature rises by several degrees. We use a simple

linear visco-elasto-plastic model, in which the viscosity is related to temperature by

a simple exponential relationship. Whereas our model is not entirely consistent with

state-of-the art rheological laws, it has the advantage of having fewer parameters. This

allows for a systematic study covering the whole parameter space. It is demonstrated

that four nondimensional parameters control the initiation of shear-zones, under both

constant stress and constant velocity boundary conditions. At the end of this chapter,

and in future work, we will focus on the late-stage evolution of shear-zones.
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4.2 Mathematical model and

non-dimensionalization

4.2.1 Governing equations

We employ two different rheologies: (i) a visco-elasto-plastic rheology with an exponen-

tial temperature-dependent (linear) viscosity (the ’simple’ model) and (ii) a rheology

which is more applicable to olivine and considers the effects of diffusion creep, powerlaw

creep and Peierls low-temperature plasticity (appendix A). In this section the govern-

ing equations for the ”simple” model are described and suitable non-dimensionalization

schemes are proposed for different boundary conditions. The rheology of dry and wet

olivine is described in more detail in appendix A, where rules are given to transform

model (ii) into model (i).

It is assumed that deformation-induced volume changes are negligible compared to

the total shear deformation of rocks, which leads to the incompressibility constraint:

∂vi

∂xi

= 0 (4.1)

here vi is velocity and xi the spatial coordinates. Assuming that the effects of inertia

and gravity can be ignored, force equilibrium gives:

∂σij

∂xj

= 0 (4.2)

where σij are stresses. Furthermore:

σij = −Pδij + τij (4.3)

where τij are deviatoric stresses and pressure P is given by:

P = −σii

3
(4.4)

The strainrate is defined as

ε̇ij =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)
(4.5)

The rheology is visco-elasto-plastic:

ε̇ij = ε̇vis
ij + ε̇el

ij + ε̇pl
ij =

1

2µ
τij +

1

2G

Dτij

Dt
+ λ̇τij (4.6)
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where D/Dt denotes the objective derivative of the stress tensor versus time t, µ is

the shear viscosity, G the elastic shear modulus and λ̇ a to-be-determined variable to

ensure that the yield criterion is not violated. Laboratory experiments [e.g. Goetze

and Evans, 1979] indicate that the stress of rocks in the upper mantle is limited by

the Peierls creep mechanism (see Appendix A). In our simplified rheological model

we approximate this mechanism by the pressure-independent von Mises yield criteria

[Simo and Hughes, 2000], which can be written as

F = |τ | − σy

where |τ | = (0.5τijτij)
0.5 is the effective stress (or the radius of the Mohr-circle) and

σy is the yield stress. Viscosity is assumed to be temperature-dependent according to

the Frank-Kamenetzky approximation [Moresi and Solomatov, 1995, McKenzie, 1977,

Frank-Kamenetzky, 1969]:

µ = µ0e
(−γT di) (4.7)

where T di = T − T0 is the temperature difference compared the to initial temperature,

T temperature, µ0 initial viscosity, T0 initial temperature and γ can be computed from

the rheology according to γ = Q/(RT 2
0 ) (with Q being the activation energy and R

the gas-constant). Conservation of energy is given by

(
∂T di

∂t
+ vi

∂T di

∂xi

)
= κ

∂2T di

∂x2
j

+
τij(ε̇

vis
ij + ε̇pl

ij)

ρcp

(4.8)

where κ is thermal diffusivity, ρ density and cp heat capacity and the last term denotes

shear-heating due to dissipative, non-recoverable processes.

4.2.2 Non-dimensionalization

We will consider both cases in which the far-field stress is kept constant and cases

in which the far-field strainrate is maintained at a constant level ε̇BG. The number

of non-dimensional parameters that occur in the present setup can be minimized by

choosing as characteristic values σ0, µ0, κ and γ. Characteristic values for stress, time,

temperature, length and strainrate are given by:

σ∗ = σ0

t∗ =
µ0

G
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T ∗ =
1

γ

L∗ =

√
κµ0

G
(4.9)

In the case of a constant strainrate boundary condition, the rheological equation (eq.

7.3) in nondimensional form (with˜denoting nondimensional variables) can be written

as:

˜̇εij =
σ0e

T̃ di

2µ0

τ̃ij +

(
σ0G

µ0

)
1

2G

Dτ̃ij

Dt̃
+

σ0

2µ0

λ̇τ̃ij (4.10)

which may be simplified to

2µ0
˜̇εij

σ0

= eT̃ di

τ̃ij +
Dτ̃ij

Dt̃
+ λ̇τ̃ij (4.11)

Since the background strain rate is maintained at a constant value, the terms on the

left-hand-side can be collected into a nondimenional parameter Bvis = 2µ0ε̇BG

σ0
, where

(0.5ε̇ij ε̇ij)
0.5 = ε̇BG, indicates the magnitude of the steady-state viscous stress versus

the initial stress. The energy equation in nondimensional form is given by
(

∂T̃ di

∂t̃
+ ṽi

∂T̃ di

∂x̃i

)
=

∂2T̃ di

∂x̃2
j

+ Brτ̃ij(˜̇ε
vis

ij + ˜̇ε
pl

ij) (4.12)

where Br =
σ2
0γ

ρcpG
is the modified Brinkman number that indicates the efficiency of

shear-heating. If, additionally, a heterogeneity length scale R is introduced, four nondi-

mensional numbers are present:

Bpl =
σ0

σy

Br =
σ2

0γ

ρcpG

Pe =
R√
κµ0

G

Bvis =
2µ0ε̇BG

σ0

(4.13)

Physically, Bpl denotes the importance of the initial stress versus the yield stress, Br

the efficiency of shear-heating, Pe the ratio of an heterogeneity length scale over the

diffusion length scale, and Bvis the ratio of steady-state viscous stress over initial stress.
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Depending on the type of boundary and initial conditions, several combinations of

nondimensional parameters are valid:

1. Constant stress boundary condition. This is a type of condition that may be

applicable inside a subducting slab, where the stress is approximately constant with

time. Bvis = 1 in this case.

2. Constant strain rate boundary condition with a relaxed initial stress state

(Bvis À 1). The condition may apply to the stress state of a lithosphere at the onset

of rifting.

3. Constant strain rate boundary condition with viscous initial stress distribution

(Bvis = 1). An example would be a lithosphere that has been deforming for several

Maxwell times and starts deforming in a different direction.

4. Constant strainrate boundary condition with little movement and viscous initial

stress (Bvis ¿ 1). This represents the condition when a lithosphere with a large initial

stress is held almost undeformed. Most of the effects will be due to the release of elastic

energy.

Upper bounds for the non-dimensional parameters given above can be estimated

by assuming that G ' 1010 − 1011 Pa, κ = 10−6 m2s−1, γ = 0.01 − 0.1, ρcp = 3 × 106

[see for example Turcotte and Schubert, 1982]. Viscosity is assumed to vary from

µ0 = 1018 − 1028 Pas. Moreover, the theoretical yield strength of rocks (given by

the point at which bonds between atoms start to break) is around 1
10

of the shear

modulus, giving a value of σy ≤ 109 − 1010 Pa [e.g. Scholz, 2002]. Typical yield

strengths of rocks vary between 500 − 1000 MPa [Regenauer-Lieb and Yuen, 2003].

Physical meaningful results can only be obtained if the initial stress, σ0, is less than

or equal to the yield stress. The stress state of the lithosphere may be estimated from

stress released from earthquakes [typically around 10 MPa, Lachenbruch and Sass,

1991] and from rheology-independent force balance considerations about the average

lithospheric stress required to support mountain belts [around 100 MPa, Jeffrey, 1959].

Maximum stress values occur in a preloaded lithosphere and will have values close to

the yield stress (1000 MPa). From these considerations, the initial stress is assumed

to vary from σ0 = 1− 1000 MPa. Strain rate estimates for geodynamic processes give

ε̇0 = 10−12 − 10−18 s−1. An upper bound for the size of the heterogeneity is obviously

the thickness of the lithosphere ∼ O(100) km, so R = 0.1− 105 m. Using these values,

the following parameter-range can be estimated to be realistic for the non-dimensional
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numbers given in eq. (4.13):

10−4 ≤ Bpl ≤ 0.4

3× 10−8 ≤ Br ≤ 3

1× 10−9 ≤ Pe ≤ 3× 103

2× 10−9 ≤ Bvis ≤ 2× 1010 (4.14)

The characteristic length scale L∗ varies between 30 m and 105 km.

4.3 Numerical methods

The initiation of shear-localization is studied with 0-D, 1-D, and 2-D models. In

this section the numerical techniques employed for the different models are described,

whereas results obtained with these methods are given in section 4.4. All values are

in non-dimensional units; we have dropped ˜ for readability. Transformation of the

non-dimensional into dimensional units can be done by multiplying them with the

characteristic values (eq. 4.9).

4.3.1 0-D model

In order to study the process of 1-D and 2-D shear-localization, one should first study

the effects purely due to the employed rheology. A 0-D model serves this purpose by

ignoring any spatial derivatives. In the case of a constant stress boundary condition

(dτ
dt

= 0 and λ̇ = 0), the model is describe by a single ordinary differential equation

(ODE) :

∂T di

∂t
= fsBrτ 2 eT di

2
(4.15)

where fs is a parameter that describes the type of the applied shear; fs = 1 for

simple shear and fs = 2 for pure shear. Moreover, τ = 1 due to the chosen non-

dimensionalization. An analytical solution of eq. 4.15 (assuming that T di(0) = 0)

is:

T di(t) = ln


− 1

fsBr
(
t− 2

fsBr

)

 (4.16)
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Figure 4.1: A) Setup of the one-dimensional model. B) Setup of the two-dimensional model.

The solution of eq. (4.16) always tends to ’blow-up’ after a blow-up time t ' 2
fsBr

(the

point where the solution becomes imaginary). A constant stress boundary condition

will thus lead to thermal runaway, a well-established fact [e.g. Turcotte and Schubert,

1982, Kameyama et al., 1999].

In the case of a constant strainrate boundary condition, two coupled ODE’s apply:

∂T di

∂t
= fsBrτ

(
ε̇BG − ε̇el

)

dτ

dt
= 2ε̇BG − eT di

τ − 2λ̇τ (4.17)

here ε̇BG = Bvis/2 and ε̇el = 1
2

dτ
dt

. If dτ
dt

is discretized as τ−τold

dt
, an expression for λ̇ is

given by:

λ̇ =

{
0, if τ ≤ σy

− 1
2dt
− eTdi

2
+ ε̇BG

σy
+ 1

2dtσy
τ old, if τ > σy

(4.18)

where σy = B−1
pl . A general analytical solution for eqs. (4.17) does not exist. Therefore

we have chosen to solve the system of equations numerically (see Appendix B for

MATLAB source codes).

4.3.2 1-D model

The 1-D model (Fig. 4.1a) assumes that a slab of thickness L is subjected to simple

shear, with either a constant shear stress or a constant velocity (which is equivalent to
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a constant background strain rate). Localization is initiated by increasing the initial

temperature to T 0
i at z = [−R/2..R/2]. The commonly-made assumption of small

strains and small rotations [Cherukuri and Shawki, 1995] is employed. In this case,

eqs. (4.2) can be simplified to:

∂τxz

∂z
= 0 (4.19)

and equation 4.12 can be simplified to

∂T di

∂t
=

∂2T di

∂z2
+ Brτxz(ε̇xz − ε̇el

xz) (4.20)

Note that eq. (4.19) implies constant τxz over the model domain. Rheology is given

by:
dτxz

dt
= 2ε̇xz − eT di

τxz − 2λ̇τxz (4.21)

Shear stress can be obtained by integrating eq. (4.21) with respect to z:

L
dτxz

dt
= U − τxz

∫ L/2

−L/2

(
eT di

+ λ̇
)
dz (4.22)

From this expression it is apparent that elasticity is not important under a constant

stress boundary condition, since dτxz

dt
= 0. In this case, the velocity at the boundary U

will change (typically increase) with time. Time discretization of equation 4.22 gives:

L
τxz − τ old

xz

dt
= U − τxz

∫ L/2

−L/2

(
eT di

+ λ̇
)
dz (4.23)

which can be rewritten as:

τxz =
Udt

L + ηdt
+

L

L + ηdt
τ old
xz (4.24)

with

η =

∫ L/2

−L/2

(
eT di

+ λ̇
)
dz (4.25)

In the case of constant strainrate boundary conditions, the problem is determined by

equations (4.20), (4.24) and (4.25). In the case of constant stress boundary conditions,
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the elastic terms in equation (4.21) disappear, and the problem is reduced to one with

quasi-viscous rheology governed by equations (4.20) and (4.21) (with dτxz

dt
= 0).

Boundary conditions for temperature are adiabatic both at the upper and the lower

boundaries (∂T di

∂z
= 0). The initial condition of temperature is uniform (T di = 0),

except in the center of the domain between −R ≤ z ≤ R, where the temperature is

raised to T 0
i . The stress at t = 0 is given by τ(t = 0) = σ0/σ0 = 1. The governing

equation for temperature is discretized with a standard second order implicit finite

difference method on a non-uniform grid with a numerical resolution of at least 2001

gridpoints. The governing equation for momentum is advanced in time by numerical

integration of the temperature field [Fleitout and Froidevaux, 1980, Kameyama et al.,

1999]. The timestep is variable and similar to the one employed in the ODE-solver

(Appendix B). Resolution tests have been performed to ensure that the temporal and

spatial resolution are sufficient. A total of more than 100’000 1D simulations have been

performed to study the onset of shear localization in a systematic manner.

4.3.3 2-D model

In order to test whether the one-dimensional simulations are applicable in two- dimen-

sional settings, we have performed over 500 two-dimensional simulations. For this we

have used two numerical codes, recently developed in the frame of this thesis. The

first code, GANGO, is a finite-difference/spectral method which solves the governing

equations for visco-elasto-plasticity in an Eulerian/Lagrangian framework, using a stag-

gered finite-difference discretization in the vertical direction and a spectral approach in

the horizontal direction. Lateral variations in viscosity are treated iteratively. Stress

advection (and rotation), which is required for the treatment of viscoelasticity, is done

by using a semi-Lagrangian advection scheme. The energy equation is solved on a grid

that has a resolution two times higher then the mechanical part of the code. Time

movement is done by an implicit approach, which additionally checks that the tem-

perature increase per timestep is not larger then a specified value. The code has been

extensively benchmarked versus a range of different setups (thermal advection, diffu-

sion, shear heating, stress around a cylindrical inclusion, viscoelastic buckling, stress

rotation). Further details of the numerical code can be found in [Kaus et al., 2004],

and a summary of benchmark results can be obtained from the first author’s web-
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page (http://www.geology.ethz.ch/sgt/staff/boris/). Relevant for the current work are

comparisons of stress distribution around a 2D elliptical viscous inclusion in a viscous

matrix, for which 2D analytical solutions were described in Schmid and Podladchikov

[2003]. Moreover, comparisons have been made with the 0-D ODE solution of Appendix

B.

The second numerical code, SloMo, employs the finite element technique to solve

the incompressible Stokes equations. The velocity-pressure formulation is employed on

quadrilateral elements with quadratic shape functions for velocity and discontinuous

linear shape functions for pressure. The rheology is temperature-dependent visco-

elasto-plastic. In the present study, the code has been used in a purely Lagrangian

manner, which has the advantage that stress advection problems do not arise but the

disadvantage that simulations are terminated when the elements become too distorted.

However this drawback was not found to be very severe for the current study since (i)

we focus on the onset of the instability and (ii) the finite element computations serve

as a comparison tool with the simulations performed with GANGO, since this code is

faster for the present setup. Excellent agreement exists between the results obtained

with SloMo and those obtained with GANGO.

Two different 2D models are employed. The first setup consists of a circular in-

clusion of radius R/2 where the initial temperature is increased to a value T 0
i (see fig.

4.1). Two different boundary conditions are employed: (1) a pure-shear background

strainrate condition, during which the model is extended at a constant strainrate ε̇bg.

(2) A constant stress boundary condition, which is numerically treated by iteratively

changing ε̇bg until the second invariant of the stress tensor at the lateral boundaries is

within 0.1% of the required boundary stress. The thermal boundary conditions are pe-

riodic in the lateral directions and zero-flux on the lower and upper boundary. The size

of the domain is 30-50 times larger then the radius of the inclusion, to ensure that the

boundaries do not influence the results. Our 2-D simulations have been performed un-

der extension. If a compressional boundary condition is applied, variations in viscosity

between the lithosphere and the underlying mantle may induce additional instabilities

like buckling, which makes it more difficult to separate the different effects. The ini-

tial heterogeneity is chosen to be circular, since this represents the worst-case scenario

for shear-localization: differently shaped inclusions generate larger stress perturbations

[e.g. Schmid and Podladchikov, 2003], and hence simplify initiation of localization.
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The second 2D setup is almost identical to the first setup, with the difference that a

layer of ’air’ is added on top, and a layer of asthenosphere at the bottom of the model.

Again a circular heterogeneity is introduced in order to initiate localization.

4.4 Initiation stage

4.4.1 0-D model

Stress and temperature evolutions computed for both the simplified rheological model

and the dry-olivine model are presented in figure 4.2. High initial temperatures re-

sult in relatively small stresses and thus relatively small amounts of shear-heating

(fig. 4.2a). Lower initial temperatures result in an increase of stress up to the yield

stress after which the stress remains constant or decreases due to the decrease of the

temperature-dependent effective viscosity. During the viscoelastic stress-buildup stage,

relatively little shear-heating occurs (most of the deformation goes into reversible elas-

tic stress-increase). Once the yield stress has been reached, however, dτ
dt

= 0 and all

further deformation is done by dissipative plastic and viscous mechanisms. There is

thus a sudden increase in shear-heating, reflected by a kink in the temperature-time

evolution (fig. 4.2b). If plasticity is deactivated (fig. 4.2c) stress-buildup continues in

the simplified model and saturates at the viscous steady-state level in the dry-olivine

model (which is unrealistically large). Once the steady-state stress is reached, elas-

tic strainrates are negligible and shear-heating is at its maximum, which results in a

faster heating-rate for the olivine model then for the simplified model. In the (unre-

alistic) case without plasticity, the simplified model does not describe the evolution

very well. This is caused by the fact that the rheology of the complex model switches

from diffusion creep to powerlaw creep at large stresses. The simplified rheology is

estimated with only one of these two deformation mechanisms, and thus overestimates

the strength of the material. If the initial stress of the model is (unrealistically) large

(fig. 4.2d) and plasticity is not considered, temperature may at some stage increase

in an almost explosive way (this has previously been called a runaway instability). In

future work we demonstrate that strictly speaking a runaway process does not occur

under constant strainrate/velocity boundary conditions, but we will keep the term

since the process may indeed result in large temperatures and eventually melting. It
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is interesting that the results obtained here with a 0-D model are in good agreement

with results obtained with the 1-D, simple-shear, model of Kameyama et al. [1999] in

terms of the time required to start the runaway instability.

A comparison of the simplified 0-D model (having 3 parameters) with the olivine

model (having 12 parameters; see appendix A) shows that the results are in fairly

good agreement concerning the overall temperature and stress evolutions. The largest

differences occur when plasticity is deactivated (fig. 4.2c), in which case the simpli-

fied model underestimates the growthrates of temperature. Given the uncertainties in

rheological constants, initial temperatures and initial stresses of the lithosphere, we

regard the simplified model to be acceptable to study the onset of shear-localization.

The remaining part of this chapter therefore concentrates on this model.

The previous results thus point out that diverse responses (e.g. runaway-like/no

runaway, plastic yielding/no plastic yielding) occur for different initial temperatures

or different non-dimensional parameters. In order to compare the various models, we

define a growth rate q0D which is given by:

q0D =
∆T

∆t
(4.26)

where ∆t is the time interval required to raise the temperature by a given unit ∆T .

Throughout most of this work, we will concentrate on the initiation stage of shear-

localization. All numerical simulations have been integrated until an increase ∆T in

temperature was detected.

In the nondimensional 0-D model, T di(t = 0) = 0. The non-dimensional parameters

in this setup are Bvis, Br and Bpl. A contour plot of q0D versus Br and Bvis for two

different values of Bpl (Fig. 4.3) demonstrates that five different domains occur, each

with its own dependence of q0D on the non-dimensional parameters (see table 4.1 for

scaling relationships). The boundaries between these different domains are relatively

sharp. The domains represent different modes of deformation and have significantly

different stress-time evolutions. We can distinguish:

1. Viscous mode. Stress changes from the initial value to the viscous stress (τ =

2µε̇BG) with little overall increase in temperature. After this, stress drops due to

the rise in temperature. The growthrate (q0D ∝ BrB2
vis) is dependent on the elas-

tic shear modulus, as well as on the background strainrate and effective viscosity.



4.4. INITIATION STAGE 113

T=750 C
o

T=600 C
o

T=543 C
o

T=600 C
oA B

DC

no plasticity no plasticity

Figure 4.2: General behavior of the 0-D model. Models A-C are computed for dry olivine
using G = 5 × 1010 Pa, ε̇ = 3 × 10−15 s−1, ρcp = 3 × 106 Jkg−1m−3, σ0 = 1 MPa and
pure-shear deformation. Models A and B include the effect of plasticity (or Peierls creep),
whereas this has been disabled in models C and D. Model D is shown as a comparison with a
1D-model of [Kameyama et al., 1999, see their fig. 3] using G = 8× 1010 Pa, ε̇ = 1.6× 10−14

s−1, ρcp = 2.4× 106 Jkg−1m−3, σ0 = 23× 109 Pa under overall simple-shear conditions. The
following parameters apply for the different models: A) µ0 = 6.5× 1021 Pas, γ = 0.039K−1,
σy = 104 MPa, Bvis = 39, Br = 1.3 × 10−7 and Bpl = 1 × 10−3. B) µ0 = 9.7 × 1026 Pas,
γ = 0.05K−1, σy = 470 MPa, Bvis5.8× 106, Br = 1.5× 10−7 and Bpl = 2.1× 10−3. C) as B)
but with σy = 1010 Pa and Bpl = 10−10. D) µ0 = 7.5 × 1023 Pas, γ = 0.097K−1, σy = 1016

Pa, Bvis = 1.0, Br = 133 and Bpl = 10−10. MATLAB scripts described in Appendix A and
B have been used to obtain A-C. Model D has been computed for the dry-olivine rheology of
[Kameyama et al., 1999, see their fig. 3].
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Figure 4.3: Numerically computed growthrate q0D as a function of Bvis, Br and Bpl for
a constant strainrate boundary condition and a 0-D simple-shear setup. Computations are
performed for ∆T = 0.1. Insets show stress evolution versus time at various locations. A)
Bpl = 10−20 (no plasticity), B) Bpl = 10−2. Scaling relationships for q0D in the various
domains are summarized in table 4.1. Expressions for the boundaries between different
deformation modes (white lines) are given in table 4.2.
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Domain Equation ∆T = 0.01 ∆T = 0.05 ∆T = 0.1
Viscous q0D = fV BrB2

vis fV = 0.50 fV = 0.49 fV = 0.48
Elastic q0D = fEBr fE = 0.50 fE = 0.51 fE = 0.53

Viscoelastic q0D = fV EBr
1
3 B

2
3
vis fV E = 0.03 fV E = 0.08 fV E = 0.12

Plastic 1 q0D = fP1BrBvisB
−1
pl fP1 = 0.50 fP1 = 0.50 fP1 = 0.50

Plastic 2 q0D = fP2BvisBpl fP2 = 0.01 fP2 = 0.05 fP2 = 0.10

Table 4.1: Scaling laws for growthrate q0D in the 0-D setup with constant strainrate bound-
ary conditions for different values of ∆T . Growthrates with a constant stress boundary
condition are identical to the expressions in the elastic domain.

If the initial stress equals the viscous stress, the growth rate is approximately

equal to the growth rate in the case of a constant stress boundary condition. If

Bvis < 1, the viscous steady-state stress is smaller than the initial stress and

stress relaxation occurs.

2. Viscoelastic mode. Stress increases almost linearly with time. During the initial

stage, little thermally-induced stress reduction is observed in this mode. The

growthrate (q ∝ Br
1
3 B

2
3
vis) depends on the amount of elasticity, viscosity and

strainrate, but not on the initial stress.

3. Elastic mode. Stress remains close to its initial value during the onset of shear-

localization. This mode only occurs for large Br-numbers, and thus requires large

initial stresses. The initial growthrates of this mode are almost identical to the

growthrates under constant stress boundary condition.

4. Plastic 1 mode. Stress increases linearly from the initial stress to the yield stress

(σy = B−1
pl ). Yielding occurs after only a small amount of bulk heating. Once

the material yields, elastic strainrates are zero (since ε̇el = dτ
dt

) and all further

deformation occurs by dissipative elastic and viscous processes. The amount of

shear-heating thus sharply rises once yielding occurs (see also fig. 4.2b).

5. Plastic 2 mode. The overall behavior is similar to the plastic 1 mode, with the

difference that yielding now occurs at the end of the numerical simulation, when

the overall temperature is almost ∆T .
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The growthrates in most domains (with exception of the viscoelastic domain) are

relatively insensitive to the total temperature increase ∆T used to determine q0D (table

4.1), meaning that eq. 4.26 is appropriate. In the viscoelastic domain, the temperature

evolution versus time is exponential rather than linear, and hence the true growthrate

is < q0D in the beginning of the simulation and > q0D at the end.

In the case of a constant stress boundary condition, only a single domain exists

with growthrate q0D ∝ fcsBr. Interestingly, this expression is identical to the elastic

case with a constant strainrate boundary condition (fcs = fE, see table 4.1). This can

be understood by realizing the the elastic case has an almost constant stress evolution

during the initial stages (inset in fig. 4.3a).

The boundaries between different modes of deformation are well defined and rela-

tively sharp. Most boundaries are continuous and in their location can be computed

analytically by requesting that the growthrates of two adjacent domains are equal at the

phase boundary (see table 4.2). A discontinuous boundary occurs between the viscous

and the elastic domain, which is accompanied with a sharp increase in growthrate.

All growthrates determined in this section are positive. Any deformation will thus

result in a temperature increase. In order to understand whether this will result in

shear-localization, a 1-D model is required.

4.4.2 1-D model

In the 1-D setup, a small perturbation either in temperature or in viscosity is introduced

at the onset of the simulations (see Fig. 4.1a). If the matrix viscosity is µ0, its

temperature will increase as Tbg(t) = q0Dt G
µ0

. The temperature of a weak zone with

Boundary Equation ∆T = 0.01 ∆T = 0.05 ∆T = 0.1
Viscous- Elastic Br = fve fve = 0.04 fve = 0.22 fve = 0.43

Viscous- Viscoelastic Bvis = fvveBr−
1
2 fvve = 0.12 fvve = 0.26 fvve = 0.35

Elastic- Viscoelastic Bvis = feveBr feve = 68.0 feve = 16.1 feve = 9.28
Viscous- Plastic 1 Bvis = fvp1B

−1
pl fvp1 = 1.0 fvp1 = 1.0 fvp1 = 1.0

Plastic 1-Plastic 2 Br = fp1p2B
2
pl fp1p2 = 0.02 fp1p2 = 0.1 fp1p2 = 0.20

Plastic 2-Viscoelastic Bvis = fp2veBrB−3
pl fp2ve = 27 fp2ve = 4.1 fp2ve = 1.73

Table 4.2: Expression for the phase boundaries in fig. 4.3.
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Figure 4.4: A) Temperature evolution versus time for a 1-D simulation with a constant
stress boundary condition and Pe = 1000, Br = 10−2, L/R = 100. B) T (maximum
temperature) minus Tbg (background temperature) of the same simulation. The slope of
the curve is q1D in equation 4.29. C) Numerically determined growthrates versus initial
perturbation temperature or viscosity for a constant stress boundary condition with Br = 1,
Pe = 1000 and ∆T = 0.1.

viscosity µ0
i will be fairly similar, but with a different timescale: T (t) = q0Dt G

µ0
i
. The

difference in temperature between the two domains is thus (see also Fig. 4.4):

T (t)− Tbg(t) =

(
µ0

µ0
i

− 1

)
G

µ0

q0Dt =

(
1

µ0
i

− 1

)
q1Dt (4.27)

where µ0
i is the initial viscosity of the shearzone (µ0

i < µ0), Tbg(t) is the temperature

evolution of the matrix far away from the shear-zone (which can essentially be described

with a 0-D model; see eq. 4.26), q1D is the 1-D growthrate, and the viscosity of the

matrix was chosen to be the scaling viscosity. In the case of a thermal perturbation,

the temperature evolution can thus be expressed as:

T (t)− Tbg(t) = T 0
i +

(
eT 0

i − 1
)

q1Dt (4.28)

which yields for a small initial thermal perturbation (T 0
i ¿ 1):

T (t)− Tbg(t) = T 0
i (1 + q1Dt) (4.29)
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Note that if q1D > 0, the heating rate in the center of the domain is larger than

the background heating rate. Temperature in the center will thus increase faster,

which results in a low viscosity zone and shear-localization. If, on the other hand,

q1D < 0, the initial temperature perturbation diffuses away, until the whole domain

has approximately the same temperature and heats with the same rate.

The growthrate q1D has been computed numerically by integrating the governing

equations 4.20 and 4.21 until T (t) > ∆T +T 0
i , with ∆T = 0.1 (reflecting an increase in

temperature of 1− 10 K). In order to obtain insight on the influence of the nondimen-

sional parameters on the initiation of shear-localization, more then 100′000 numerical

simulations have been performed. Convergence tests showed that the spatial and time

resolution employed was sufficient.

In addition to the non-dimensional parameters Bpl, Bvis and Br, two new param-

eters occur in the 1-D setup namely Pe = R/L∗ and R/L. Pe describes the ratio

between the size of the initial heterogeneity R and the diffusion lengthscale (Eq. 4.9).

L/R is the ratio between the size of the domain and the size of the heterogeneity .

If L > R is sufficiently large, this ratio does not influence the dynamics of the initial

stages. Otherwise, the boundaries will influence the dynamics at the center of the

deforming domain and the growthrate is reduced. The critical L/R is dependent on L∗

and was found to be around 2 to 3 for the setup considered here. This is rather small

compared to typical shear-zones, and therefore we assume this effect to be negligible.

Constant stress boundary condition

In the case of a constant stress boundary condition, Bvis = 1 and Bpl plays no role

since σ0 ≤ σy. Therefore, the only non-dimensional parameters that may influence the

problem are Br and Pe. An expression of q1D, for sufficiently large Pe-numbers, is

given by:

q1D = 0.55Br (4.30)

The dependence of q1D on Pe is shown on figure 4.5A. Diffusion starts to reduce the

growthrate if Pe < 0.12 and inhibits localization (q1D becomes negative) if Pe < 0.06.

The boundary between localization and no-localization (i.e. diffusion dominates) is

given by (see also fig. 4.5B):

Pe = 10cBr−0.5 (4.31)
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Figure 4.5: A) Normalized growthrate versus Pe for a constant stress boundary condition
with Br = 1000, ∆T = 0.1 and T 0

i = 0.01. Diffusion inhibits localization if Pe < 0.06. B)
Numerically computed growthrate q1D versus Pe and Br with ∆T = 0.1. Diffusion dominates
in the white area. Expressions of the black lines are given in the text.

where c = 2.3 under simple-shear and c = 1.7 under pure-shear boundary conditions.

It will be shown later that this expression can be derived analytically.

Constant velocity boundary condition

The 1-D growthrate in simulations with a constant velocity boundary condition are

shown for different Pe, Bpl, Bvis and Br-numbers in figure 4.6. The 0-D and the 1-D

growthrates are similar (see also Table 4.3). Differences, however, are related to the

effect of diffusion, which may inhibit localization if it is faster than the rate of heat

production.

Diffusion is proportional to Pe−2. The equations for the phase boundaries that

involve diffusion demonstrate that this boundary can be predicted under the assump-

tion that the diffusion growthrate is given by qdiff ≈ 2
Pe2 (the factor can be predicted

analytically as will be shown in the next section). The requirement qdiff = q1D,vis then

predicts the phase boundary.
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Localization and diffusion

Analytically, the effect of diffusion on inhibiting shear-localization can be understood

by noting that the time trise, required to increase the temperature of the inclusion from

T 0
i to T 0

i +∆T , in the absence of diffusion, is dependent on the background growthrate

of temperature as:

trise =
∆T

q0D + T 0
i q1D

≈ ∆T

q0D

(4.32)

where T 0
i ¿ 1. An analytical solution for the temperature evolution with time at the

center of a 1D shearzone of width R, with initial temperature T 0
i and with a constant

heat production Q = q1DT 0
i , is given by [e.g. Carslaw and Jaeger, 1959, Cardwell et al.,

1978]:

T (tn)− Tbg(t
n)

T 0
i

=

(
q1DPe2

(
tn +

1

8

)
+ 1

)
erf

(
1

4
√

tn

)
+

q1DPe2
√

tn

2
√

π
exp

(
−

(
1

4
√

tn

)2
)
− q1DPe2

8
(4.33)

where tn = t
Pe2 is the rescaled time. Diffusion will be more efficient than heating if at

a given time tn, the left-hand-side of 4.33 becomes < 1. An analytical solution for the

transition between diffusion-dominated and heating-dominated temperature evolution

is thus:

q1DPe2 =
1− erf

(
1

4
√

tn

)

(
tn + 1

8

)
erf

(
1

4
√

tn

)
+

√
tn

2
√

π
exp

(
−

(
1

4
√

tn

)2
)
− 1

8

(4.34)

Domain Equation ∆T = 0.01 ∆T = 0.05 ∆T = 0.1
Viscous q1D = fV BrB2

vis fV = 0.50 fV = 0.50 fV = 0.50
Elastic q1D = fEBr fE = 0.51 fE = 0.53 fE = 0.55

Viscoelastic q1D = fV EBr
1
3 B

2
3
vis fV E = 0.03 fV E = 0.08 fV E = 0.13

Plastic 1 q1D = fP1BrBvisB
−1
pl fP1 = 0.48 fP1 = 0.51 fP1 = 0.53

Plastic 2 q1D = fP2BvisB
−1
pl fP2 = 0.01 fP2 = 0.06 fP2 = 0.11

Table 4.3: Scaling laws for growthrate q1D in the 1-D setup with constant strainrate bound-
ary conditions for different values of ∆T . Growthrates with a constant stress boundary con-
dition are identical to the expressions in the elastic domain. Expressions have been derived
for Pe >> 1.
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The solution is plotted in figure 4.7A. At small times, diffusion is not very efficient. At

later stages (larger tn) diffusion becomes more efficient, and may eliminate the initial

increase in temperature in the center of the shearzone. If, however, q1D > 3
Pe2 diffusion

will not be able to inhibit shear-localization.

The analytical solution can be compared with the previously obtained numerical

results (which have been integrated until T (t) = T 0
i + ∆T ) by noting that q1D ≈ q0D,

and that trise ' ∆T
q1D

. Substituting this expression into equation 4.34 gives an implicit

equation for q1D. The critical growthrate required to overcome the effect of diffusion

is given by

q1D =
f(∆T )

Pe2
(4.35)

where f(∆T ) is a constant that is solely dependent on ∆T (which can be obtained

numerically from eq. 4.34; see fig. 4.7B). For small ∆T

∆T ' 10−2q1DPe2 (4.36)

The prediction of eq. 4.33 was verified by 1-D numerical simulations, which have

been integrated until t = trise. An excellent agreement exist between the numerically

determined time evolution of the maximum temperature in the shearzone and eq. 4.33.

Equation 4.35 can be used to predict the boundary between the viscous deforma-

tion mode and the diffusion mode shown in figure 4.6. In this figure ∆T = 0.1, giving

f(0.1) ≈ 100.3. The condition for inhibiting localization thus gives 0.55BrB2
vis =

100.3Pe−2 or Bvis = 2Pe−1Br−0.5, which is in excellent agreement with the numerical

Boundary Equation ∆T = 0.1
Viscous- Elastic Br = fve fve = 0.43

Viscous- Viscoelastic Bvis = fvveBr−
1
2 fvve = 0.36

Elastic- Viscoelastic Bvis = feveBr feve = 8.7
Viscous- Plastic 1 Bvis = fvp1B

−1
pl fvp1 = 1.0

Plastic 1-Plastic 2 Br = fp1p2B
2
pl fp1p2 = 0.20

Plastic 2-Viscoelastic Bvis = fp2veBrB−3
pl fp2ve = 1.77

Diffusion-Viscous Bvis = fdvPe−1Br−0.5 fdv = 2
Diffusion-Plastic 1 Bvis = fdp1BplPe−2Br−1 fdp1 = 3.8

Table 4.4: Expression for the phase boundaries in fig. 4.6.
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Figure 4.7: A) Growthrate versus tn (eq. 4.34). Grey area is diffusion-dominated. B)
Growthrate versus ∆T . The black line is computed analytically from equations 4.32 and
4.34. 1-D numerical simulations have been performed to verify the analytical solution and
are indicated by crosses (T (trise) > T 0

i ) and circles (T (trise) < T 0
i ). Maximum occurs at

∆T ' 0.34, q1DPe2 ' 3.

simulations (see table 4.4). Similarly one can predict that diffusion will inhibit local-

ization if Pe < 0.06, in the case of a constant stress boundary condition and with the

parameters of fig. 4.5.

4.4.3 Link between current and classical analysis of shear-
localization

At this stage, it is interesting to compare the results obtained sofar with the more clas-

sical analysis of shear-localization, such as the one presented in Turcotte and Schubert

[1982]. Their analysis is done for steady-state conditions, constant stress boundary

conditions, and assumes that a layer of constant thickness H is deformed under sim-

ple shear. The lower boundary is thermally insulating and the upper boundary is of

constant temperature. Rheology is viscous. They demonstrated that the maximum

temperature in the sheared layer is a function of the Brinkman number Br∗. Turcotte

and Schubert [1982] derive Br∗ for an Arrhenius-type rheology. One can show that in
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the case of a Frank-Kamenetzky rheology (eq. 4.7), Br∗ is defined as:

Br∗ =
σ2

0H
2γ

kµ0

(4.37)

where k = κρcp denotes thermal conductivity. The maximum dimensionless tempera-

ture ∆T in the sheared layer depends on Br∗ as [Turcotte and Schubert, 1982]:

Br∗ =
2
(

Br ln(∆T )
2

)

(
cosh

(
Br ln(∆T )

2

)0.5
)2 (4.38)

For small temperature increase (subcritical branch), the following relationship holds:

∆T ' 0.5Br∗ (4.39)

There are two important differences between the ’classical’ analysis outline above

and the one studied in this chapter. They are:

1. The classical analysis assumes a constant thickness shearzone, whereas the work

presented here only prescribes the thickness of the initial thermal perturbation. Due

to the effects of shearheating and diffusion, the shearzone thickness can evolve with

time.

2. The classical analysis assumes steady-state conditions (∂T
∂t

= 0), whereas in the

present work ∂T
∂t

> 0.

In the following we show that it is possible use the results of the ’classical’ analysis,

in order to predict the expression for growthrate q0D. If the shearzone is thin, and of

constant temperature ∆T , the energy equation can be simplified to:

∂∆T

∂t
= −κ

∆T

H2
+ q0D (4.40)

At steady-state conditions,∂∆T
∂t

= 0. With the use of eqns. (4.39) and (4.38), one

obtains

q0D = 0.5κ
Br∗

H2

q0D = 0.5
σ2

0γ

ρcpµ0

= 0.5Br (4.41)

This result is identical to the result found previously by numerical analysis (table 4.1).
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4.4.4 2-D model

The results presented in the last section were valid for the initiation stage in a 1-D

simple shear setup, or in other words for deformation along an existing weak-zone. The

purpose of the current section is to understand how such weak-zones can be created

in 2-D pure-shear extensional setting (see fig. 4.1 for the setup). Shear localization

is initiated by increasing the initial temperature to T 0
i , or decreasing the viscosity to

µ0
i in a circular heterogeneity with radius R. Two cases will be considered: (1) the

background strain rate is maintained constant and (2) the far-field stress is maintained

at a constant level.

Three examples of shear-localization under constant strainrate boundary conditions

are shown in figure 4.8. In these examples, plasticity is not activated. As in 0-D and

1-D, we can distinguish the following deformation modes:

• The viscous simulation reaches the viscous steady-state stress (σ2nd = Bvis) very

soon after the onset of extension. A ’flower-like’ shear-heating distribution in

and around the inclusion is obtained at this stage, which is in agreement with

recently obtained 2-D analytical results of Schmid and Podladchikov [2003] and

Schmid [2002]. Shear-heating is largest in the lobes around the inclusion.

• The viscoelastic simulation shows a distinctly different behavior. In this case

shear-heating mainly occurs in the center of the heterogeneity. This can be

understood by recalling that shear-heating is proportional to τij

(
ε̇ij − ε̇el

ij

)
. In-

creasing temperature reduces the viscosity and makes the material more ’viscous’

(since it lowers the Deborah-number; De = 2µε̇
G

). The more viscous a material,

the lower the elastic strainrate and thus the more heat is dissipated.

• The elastic simulation behaves like the visco-elastic simulation with the difference

that stress, and therefore shear-heating, stays at an almost constant level. This

is in agreement with the 0-D and 1-D models.

The viscoelastic mode ultimately switches into a viscous mode (heating around

instead of inside the inclusion) but only when the viscous steady-state stress has been

reached (after 2-3 Maxwell times). As will be shown later, this does not occur for

realistic parameters, since the stresses are too large. Once this switch occurs, however,

linear low viscosity shearzones are initiated from the inclusion.



126 CHAPTER 4. SHEAR LOCALIZATION

99

94

96

2100

2170

3400

91

93

88

3200

4400

4700

1.11

1.19

1.29

1.37

1.28

1.18

A

-10 0 -10 -10100 10010

10

0

- 10

10

0

- 10

10

0

- 10

B

C

shear
heat

D

0 2 4 6
x 10

-3

0

0.1

T

0

1

s
2
n
d

0

10

s
2
n
d

maximum
background

0

0.1

T

0 40 80

0

70

s
2
n
d

0

0.1

T

0 0.02 0.04

Viscous Viscoelastic Elastic

t /s m0 0 t /s m0 0 t /s m0 0
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the domain only but otherwise behaves elastically. The plastic mode results in whole domain
yielding.
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If plasticity is considered in the simulations, the pattern of deformation changes.

We have observed three different types of plastic deformation modes (fig. 4.9):

• The plastic mode corresponds to the plastic-1 and plastic-2 modes in the 1-D

setup. During the pre-yielding stages of the simulation, shear-heating is maxi-

mum in the inclusion (as in the viscoelastic or elastic modes). At yielding, brittle

shear-zones initiate at an angle of 45o from the inclusion and ’cut’ the model

domain. Initiation occurs in the four lobes around the inclusion, since the stress

at these points is slightly larger then the background value. With continuous

deformation, the rest of the model domain yields. At this stage, large, linear

zones with a slightly reduced viscosity have been created. The setup is now sim-

ilar to the 1-D setup with a pure-shear rather then a simple-shear background

deformation. Continuing deformation may result in weak shearzones.

• The static-plastic mode occurs when the yield stress is slightly larger than viscous

steady-state stress of the matrix close to the viscous-plastic boundary. In this

deformation mode, yielding occurs locally and for a finite amount of time only.

The maximum stress around a weak inclusion is larger than the stress away from

the inclusion. The amount of stress-enhancement depends on the aspect-ratio of

the inclusion and on the viscosity contrast between inclusion and matrix. Circular

inclusions have a maximum stress-increase of ∼ 30% [see e.g. Schmid, 2002],

whereas infinitely long elliptical inclusions may have an infinite stress-increase

at their tips. In the static-plastic mode, yielding occurs for a finite-amount of

time only since the overall temperature increase results in a viscosity reduction,

which will ultimately drop the stress below the yield level. After this, deformation

proceeds as in the viscous mode. No long-living stable shearzone is thus expected

in this domain.

• The elasto-plastic mode occurs when the yield stress is very close to the initial

stress. Whereas shear-heating in the inclusion is largest, zones of local yielding

exist and propagate outwards. Ongoing deformation results in thermal runaway.

Simulations performed with a constant stress boundary condition are similar to the

elastic mode under constant strainrate conditions.
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Domain Growthrate in center Growthrate outside
Viscous qcen

2D ≈ 0 qout
2D = 0.25B2

visBr
Elastic qcen

2D = 1.1Br qout
2D ≈ 0

Viscoelastic qcen
2D = 0.15Br

1
3 B

2
3
vis qout

2D ≈ 0
Plastic qcen

2D = 0.05BrBvisB
−1
pl qout

2D ≈ 0

Table 4.5: Scaling laws for growthrate in the 2-D setup with constant strainrate boundary
conditions. Growthrates have been determined both in the center of the inclusion and outside
the inclusion (stars in fig. 4.8) for Pe >> 1 and ∆T = 0.1.

In order to understand whether the different deformation modes described above

form for the same range of parameters as the corresponding 0-D and 1-D modes, we

have performed systematic 2-D simulations. The results (fig. 4.10) indicate that this

is the case. Diffusion in 2-D is slightly more efficient than in 1-D but differences

are small and the diffusion boundaries derived in the previous section can be applied

to 2-D cases. It should be noted that the timescale in our model is given by the

Maxwell relaxation time (= µ0/G). The total amount of strain, required to raise

the temperature to ∆T , is dependent on the relaxation time. The inclusion remains

circular during deformation only for sufficiently small relaxation times, or sufficiently

large growthrates. In other cases, the inclusion becomes elliptical and Pe decreases,

enhancing the effect of diffusion.

In 2-D, shear-heating is maximum in either the center of the inclusion (e.g. fig.

4.8A), or in one of the lobes around the inclusion (e.g. fig. 4.8B,C). To further compare

the 2-D with the 1-D results, growthrates have determined both inside and outside the

inclusion (table 4.5). In general, either the inside or the outside of the inclusion heats

with similar rates as in the 1-D case. The viscous cases produce more heat outside,

and the viscoelastic and elastic cases more heat inside the inclusion (in agreement with

fig. 4.8).

The dependence of the growthrate on inclusion temperature or viscosity is similar

to the 1-D case for small viscosity contrasts (eq. 4.27). For viscosity contrasts larger

than 10-100, the growthrate in the viscous domain saturates, whereas the viscoelastic

undergoes a switch from heating inside to heating outside the inclusion.

The 2-D simulations thus point out the importance of plasticity in creating linear

zones of enhanced shear-heating. Plasticity has two effects: Firstly, it limits the stress
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level to reasonable values. Secondly, the onset of plastic yielding is accompanied by the

creation of linear zones in which shear heating is slightly larger than the background

level. Whereas this does not immediately result in large-scale shear localization since

the absolute increases in temperature are small (generally < 1K), it does help to

localize deformation at later stages in the deformation. Once these linear zones have

been created, ongoing deformation and localization is essentially a one-dimensional

process.

4.5 Possible implications for shear-localization on

planets

We have demonstrated that shear-localization may occur by different deformation

modes. In the current section we provide insight into the possible relevance of these

modes for earth-like conditions.

For a given inclusion size, initial stress and yield stress, a phase diagram of defor-

mation modes versus effective viscosity µ0 and background strainrate ε̇BG is shown in

figure 4.11. For the creation of this diagram, we assumed small amounts of heating and

small initial thermal perturbations. The results demonstrate that shear-localization is

possible for earth-like parameters. However, the transition between localization and

no-localization is critically dependent on the background strainrate, the effective vis-

cosity and the size of the initial heterogeneity. Small background strainrates and/or

small effective viscosities require large pre-existing heterogeneities for shear-localization

to initiate. In order to verify whether the scaling laws, derived for the initial stages,

also describe the behavior during later stages, we have performed additional late-stage

1-D numerical simulations integrated until ∆T ≥ 10 (corresponding to 200-1000 K).

The results indicate that the diffusion-viscous and the viscous-viscoelastic boundaries

are indeed correctly predicted from the initial stage analysis. The plastic-diffusion

boundary, however, does not seem to occur during later stages. An analysis of the

numerical simulations showed that significant stress drop occurs during late stages of

simulations within the plastic-viscous mode. Thus, this mode becomes very similar

to the viscous mode, which explains why the transition to no-localization is described

by the diffusion-viscous boundary. The boundary between diffusion and localization is

independent of the initial stress and the elastic shear-modulus of the lithosphere, but
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is strong function of the heterogeneity-size (fig. 4.11):

ε̇BG =
1.4

R

√
κρcp

µ0γ
(4.42)

The initial stress and the elastic shear-modulus, however, influence the Br-number

(indicating the efficiency of shear-heating), which in turn influences the growthrate

and is thus proportional to the amount of strain required to raise the temperature by

a certain value. Large initial stresses help to form shear-zones.

A new effect occurs during late stages, namely the transition from aseismic creep

to ”seismic” creep, the latter being characterized by a rapid increase in temperature

and strainrate in the center of the shear-zone (similar to the effect described in figure

4.2D). For the parameters of figure 4.11, both the viscoelastic and the elastic modes

are not present. The elastic mode is absent since the initial stress of σ0 = 10 MPa

yields Br ' 3 × 10−5, which is too small for the elastic mode. The viscoelastic mode

is absent since Bpl is sufficiently large (Bpl ' 0.01).

Two-dimensional simulations, performed for lithospheric parameters, generally con-

firm the 1-D results (fig. 4.12). For a given strainrate of 3× 10−15 s−1, no localization

occurs for lithosphere viscosities which are around an order of magnitude lower than

the critical value of O(1023) Pas determined from the 1D scaling laws. The larger the

viscosity, the stronger the localization process. It is important to note that the main

reduction in viscosity (and therefore the main localization process) does not occur when

the lithosphere first yields, but later. The simulation of fig. 4.12C, for example, starts

yielding after ∼1 % extension. The main localization, however, occurs between 6-7 %

extension. Before this stage the lithosphere is extended in a pure-shear mode. After-

wards strain localizes in thin zones (which have been formed during initial yielding of

the lithosphere; see also fig. 4.9). The larger the initial viscosity of the lithosphere,

the more elastic the lithosphere (the Deborah-number = 2µ0ε̇0/G is larger) and the

more vigorously the localization stage occurs. Simulations, performed for viscosities

much larger then those shown in figure 4.12, are numerically difficult due to the very

high strain rates that develop together with a fast drop in stress and large increase in

temperature. This phenomenon is physically most likely related to the development

of earthquakes and was also observed by other authors [e.g. Regenauer-Lieb et al.,

1999, Regenauer-Lieb and Yuen, 2000a, 2004]. It is important to note that plasticity

helps creating lithospheric-scale shear-zones (fig. 4.12A and D). For realistic strain
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A B

C D

Figure 4.12: 2-D results for a lithosphere with an initially circular weak inclusion of 5
km radius that is extended with a pure-shear constant strainrate of 3 × 10−15s−1. The
initial viscosity is A) µ0 = 5 × 1022, B) µ0 = 5 × 1023, C) µ0 = 1025. Model D) has
the same parameters as model B), but with plasticity deactivated. Other parameters are
G = 1011, γ = 0.1ρcp = 3 × 106, κ = 10−6, σ0 = 50 MPa, σy = 1000MPa The free surface is
approximated by a layer of µ = 1019 Pas in the top 50 km’s of the model (with a no-stress
boundary condition on top of the layer). A moderate resolution of 301 × 64 is employed.
Black lines represent a passive marker grid. Gravity is not present.
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rates and viscosities, plasticity is required to limit maximum stress levels, which would

otherwise be unrealistically large. Plasticity also helps in creating linear zones where

localization occurs during later stages. Localization is also possible in the non-plastic

modes. However localized zones in the viscous mode are relatively thick and require

large heterogeneities, whereas deformation in the viscoelastic mode develops unrealisti-

cally large stresses. That the creation of shearzones around weak inclusions is difficult

was also found by Mancktelow [2002] for a strain-weakening viscous rheology rather

then a thermal weakening rheology.

It is interesting to compare the results obtained here with other works. Regenauer-

Lieb et al. [2001] presented a model in which subduction was initiated by adding ∼ 10

km of sediments on top of an oceanic plate. They obtained lithospheric-scale shear-

zones for wet olivine rheologies only. Whereas their model setup and rheology differs

from the one employed in this study, we can still obtain some insight in the process

by employing the scaling relationships derived here. The initial growthrate of the

shear-localization instability under a constant stress simple shear boundary condition

is q1D = 0.5Br. Diffusion may inhibit shear localization if q1D < 3/Pe2. By using the

definitions of the non-dimensional parameters (eq. 4.13), it can be shown that diffusion

will influence shear-localization if µ0 >
0.5γσ2

0R2

3κρcp
. We can estimate σ0 ≈ 250 MPa (10 km

thick pile of sediments with a density of 2500 kg/m3) and R ≈ 15 km (their sediment

pile has a width of around 30 km’s). Employing common values for the other param-

eters (γ = 0.1, ρcpκ = 3), gives a minimum viscosity of µ0 ≈ 1023 Pas, above which

diffusion will influence shear-localization. If the constant stress boundary condition is

applicable, the models should ultimately result in thermal runaway after t G
µ0
≈ 2

Br
or

t ≈ 2ρcpµ0

σ2
0γ

. This time increases with increasing viscosity, from t ≈ 3Myrs for µ0 = 1023

Pas to t ≈ 300Myrs for µ0 = 1025 Pas (using the parameters above). Thus, for large

effective viscosities, diffusion influences localization and the time required to produce

shear-localization increases significantly. Both arguments seem to indicate that low

effective viscosities are required to initiate shearzones under constant stress boundary

conditions. Wet rheologies generally have smaller effective viscosities for the same am-

bient conditions than dry rheologies. Thus, the scaling laws derived here seem to give

a physical explanation of the observation that water is required to initiate subduction

[Regenauer-Lieb et al., 2001]. One-dimensional numerical simulations, performed un-

der pure-shear boundary conditions and for different olivine rheologies and inclusion
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sizes confirm this (see fig. 4.13).

Regenauer-Lieb and Yuen [2004] studied the development of thermal shear-zones

in a lithosphere with a water-dependent rheology. They employed a constant ve-

locity boundary condition and showed that water is important in creating aseismic

lithospheric-scale shearzones. Under dry conditions they obtained seismic shearzones,

preventing further computation. A similar effect can be observed here (fig. 4.11).

For a given strainrate, thermal runaway occurs at large effective viscosities (i.e. dry

rheology), whereas stable localization occurs at smaller viscosities (wet rheology).

We have ignored the strainrate-dependence of viscosity in 1-D and 2-D simulations.

The powerlaw-dependence of viscosity on strainrate µ ∝ ε̇
1
n
−1 will produce additional

weakening of viscosity with increasing strainrate. During later stages, this effect may

be significant and would increase both the shear-localization and the thermal runaway

domain on figure 4.11.
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4.6 Conclusions

We have identified the parameters that control the initiation of thermal shearzones in a

visco-elasto-plastic material. The feedback mechanism responsible for localization is a

reduction of viscosity due to an increase in temperature through shear-heating. It was

demonstrated that up to five deformation modes occur, as a result of the rheological

constitutive equations. These deformation modes are a function of the non-dimensional

numbers Bvis = 2µ0ε̇0

σ0
, Br =

σ2
0γ

ρcpG
and Bpl = σ0

σy
. Each deformation mode has a

characteristic stress-evolution. Comparison of the simplified rheology with a more

complex rheology which takes into account the effect of diffusion creep, powerlaw creep

and Peierls plasticity, shows that the simplified model is an acceptable first order

approximation of the more complex models.

Systematic one-dimensional simulations show that shear-localization, if initiated by

a reduction in viscosity or an increase in temperature, occur with the same deforma-

tion modes as in the 0-D case. Diffusion may inhibit localization. A growthrate of

temperature increase was derived and scaling laws are computed for the dependency

of this growthrate on the various non-dimensional parameters. An analytical solution

is derived for the effect of diffusion on shear-localization.

Two-dimensional simulations generally behave like the 1-D simulations. If a cir-

cular, rather then linear, initial heterogeneity is present and a pure shear boundary

condition is applied, plasticity is required to create large-scale linear shear-zones. For

earth-like parameters, shear-localization through the mechanism presented here is pos-

sible, but requires sufficiently large effective viscosities and heterogeneity sizes. Hetero-

geneities of O(1) km, for example, require an effective viscosity O(1024) Pas, to initiate

localization. For viscosities in excess of 1026 Pas, thermal runaway occurs. Smaller

heterogeneities will also produce heat, but this heat is rapidly removed by the effects

of thermal diffusion, and hence no localized shearzones form.
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4.7 Appendix A: Rheology of dry olivine and con-

version to the simplified model

Viscous deformation of olivine in the ductile regime occurs mainly by diffusion creep,

power-law creep and the Peierls mechanism also called low-temperature plasticity [e.g.

Kameyama et al., 1999, Regenauer-Lieb and Yuen, 2003]. If, in addition, the effect of

elasticity in a Maxwell material is considered, then the combined rheological equation

becomes:

ε̇ij =
1

2G

dτij

dt
+ ε̇vis

ij (4.43)

with

ε̇vis
ij = ε̇pc

ij + ε̇dc
ij + ε̇pp

ij (4.44)

where the subscripts pc, dc and pp denote the effects of powerlaw creep, diffusion

creep, and Peierls plasticity respectively. These effects are described in more detail in

the following sections.

4.7.1 Powerlaw creep

The flow-law for powerlaw creep is generally determined with triaxial compression

experiments and has the form [Karato and Jung, 2003]

ε̇11 = ApC
r
OH (τ11 − τ33)

n exp

(
−Qp + PV

RT

)
(4.45)

where Ap, Qp, V are experimentally determined values, P is pressure, R = 8.31Jmol−1K−1

the universal gas constant, T temperature, COH hydroxile concentration, r a parameter

(=0 in dry cases) and 1 indicates the direction of maximum compression. Unfortu-

nately, equation 4.45 is not in a general tensorial form, which is required for numerical

computations. Molnar et al. [1998], among others, demonstrate how the tensorial form

can be obtained. The first assumption is that the material is incompressible. Triaxial

compression then gives:

ε̇11 = − (ε̇22 + ε̇33) = −2ε̇22 = −2ε̇33 (4.46)

If the material is also isotropic:

τ11 = −2τ22 = −2τ33 (4.47)
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a general tensorial form of equation 4.45 is:

ε̇ij = ACr
OHApσ

n−1
2nd exp

(
−Qp + PV

RT

)
τij (4.48)

where A is a constant and σ2nd =
√

1
2
τijτij is the second invariant of the deviatoric

stress tensor. In a (ideal) triaxial test, shear stresses are not present and the second

invariant simplifies to:

σ2nd =

√
1

2
(τ 2

11 + τ 2
22 + τ 2

33) =

(√
3

2

)
τ11 (4.49)

spelling out equation 4.48 for ε̇11 gives:

ε̇11 = AApC
r
OH

((√
3

2

)
τ11

)n−1

exp

(
−Qp + PV

RT

)
τ11

= AApC
r
OH

(√
3

2

)n−1

τn
11exp

(
−Qp + PV

RT

)
(4.50)

Equation 4.45 can be rewritten as (using the fact that τ33 = −1
2
τ11):

ε̇11 = ApC
r
OH

(
3

2

)n

τn
11exp

(
−Qp + PV

RT

)
(4.51)

Equation 4.51 and equation 4.50 should be the same. This can only be the case if

A = 3(n+1)/2

2
. The general tensor expression for powerlaw creep is thus:

ε̇pc
ij =

3(n+1)/2

2
ApC

r
OHσn−1

2nd exp

(
−Qp + PV

RT

)
τij (4.52)

The pressure term in equation 4.52 introduces is maximum ∼ 10 − 20% of Qp (for

depths of up to 200 km) and has therefore been ignored in this study.

4.7.2 Diffusion creep

Diffusion creep is linearly viscous (i.e. n = 1), but has a grainsize-dependency. The

tensorial form can be derived as described above and is given by [e.g. Karato et al.,

1986]

ε̇dc
ij =

3

2
Add

−pτijexp

(
− Qd

RT

)
(4.53)

where d is the grainsize and p an experimentally determined constant.
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4.7.3 Peierls low temperature plasticity

At large stresses, the diffusion creep and powerlaw creep flow laws break down and

are replaced by Peierls plasticity. The experimentally determined flow law for Peierls

plasticity is given by [e.g. Goetze, 1978, Goetze and Evans, 1979]:

ε̇11 = ε̇0exp

(
−Ha

RT

(
1− τ11 − τ33

σ0

)2
)

(4.54)

Note that a different form of equation 4.54 was used in Regenauer-Lieb and Kohl

[2002],Regenauer-Lieb and Yuen [2004] and Karato et al. [2001]. They additionally

introduced a dependency of Ha on the melting temperature (as a function of pressure).

This correction increases Ha by a maximum amount of ∼ 7% at a depth of 100 km,

and for the sake of simplicity, this effect has been ignored here.

A more general form of equation 4.54 is clearly given by:

ε̇ij = A
τij

σ2nd

ε̇0exp

(
−Ha

RT

(
1− bσ2nd

σ0

)2
)

(4.55)

here A and b are geometrical factors that should be derived by matching the tensorial

form with the triaxial expression. Making again the approximation of incompressibility

and isotropy (eqs. 4.47 and 4.49), allows to rewrite eq. 4.55 as:

ε̇11 = A
2τ11√
3τ11

ε̇0exp


−Ha

RT

(
1− b

√
3τ11

2σ0

)2

 (4.56)

and equation 4.54 as:

ε̇11 = ε̇0exp

(
−Ha

RT

(
1− 3τ11

2σ0

)2
)

(4.57)

comparing 4.56 with 4.57 implies that A =
√

3
2

and b =
√

3. Thus 4.55 becomes:

ε̇pp
ij =

√
3

2σ2nd

ε̇0exp

(
−Ha

RT

(
1−

√
3
σ2nd

σ0

)2
)

τij (4.58)

It should be noted that Peierls plasticity is only valid for low temperatures T ≤ 1000K

and stresses O(100) MPa. At lower stresses the particular expression of Peierls plas-

ticity may interfere with the other flowlaws.

Table 4.6 summarizes values for dry and wet olivine employed in this study.
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Variable Value Units Wet/Dry Source
Qd 290× 103 J/mol dry 1
Qd 250× 103 J/mol wet 1
Ad 7.7× 10−8 Pa−1s−1mm3 dry 1
Ad 1.5× 10−9 Pa−1s−1mm3 wet 1
p 3 - both 1
d 0.1 mm both
Ap 2.4× 105 MPa−3.5s−1 dry 2
Qp 510× 103 J/mol dry 2
n 3.5 - dry 2
Ap 1.9× 103 MPa−3s−1 wet 2
Qp 420× 103 J/mol wet 2
n 3 - wet 2
COH 4000 ppm H/Si wet 2
r 1.3 - wet 2
r 0 - dry 2
ε̇0 5.7× 1011 s−1 dry 3
Ha 536× 103 J/mol dry 3
σ0 8.5× 109 Pa dry 3
ε̇0 1.2× 1012 s−1 wet 3
Ha 498× 103 J/mol wet 3
σ0 9.1× 109 Pa wet 3

Table 4.6: Rheological parameters for olivine employed in this study. References: 1-Karato
et al. [1986], 2-Karato and Jung [2003], 3-Regenauer-Lieb and Kohl [2002]

4.7.4 Conversion to simplified model

Equations 4.58, 4.53 and 4.52 can be used to estimate the values of γ and µ0 in eq.

4.7. In the case when diffusion creep dominates the initial stress evolution, viscosity

can be approximated by

µ0 =
|ε̇vis(T, |τ |)|

2|τ | (4.59)

If powerlaw or dislocation creep dominates the steady-state stress evolution, µ0 can be

obtained from equation 4.52. Finally, γ can be computed numerically by computing
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µ0 effective viscosity at T and at T + ∆T . This gives:

γ = −
ln

(
µ0(T+∆T )

µ0(T )

)

∆T
(4.60)

We have employed ∆T = 1◦ K.

The simplified rheology consists thus of a viscous part (estimated either from pow-

erlaw or from diffusion creep), a plastic part (estimated from Peierls plasticity) and

an elastic part. Good agreement exist between the simplified and the complex models,

except if a transition from diffusion-creep to powerlaw creep occurs during a model run.

In this case, the simplified model typically underestimates stresses and growthrates of

temperature (fig. 4.2). A MATLAB script that implements the rheology described

above, with the parameters listed in table 4.6, is shown in figure (4.14).

4.8 Appendix B: MATLAB codes for the 0-D model

The MATLAB script ODE VEP.m (www.mathworks.com) which integrates the cou-

pled ODE’s in equation 4.17 is shown on figure 4.15. A variable, adaptive timestep is

employed together with an implicit time-integration. A MATLAB script which calls

ODE VEP.m and compares the dry olivine model with the simplified model is shown

on figure 4.16.
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function [str_rate_creep,str_rate_diff, str_rate_pow, str_rate_pei, mu_eff, gamma, sigma_y,mu_eff_best] = ...

Olivine(varargin)

%==============================================================================================================

% OLIVINE.M

%

T = varargin{1};

stress = varargin{2};

flowlaw_type = varargin{3};

if nargin>3

str_rate_bg = varargin{4};

end

R = 8.3145; % [J/mol/K ]

switch flowlaw_type

case ’Olivine_dry’

% Diffusion creep parameters for dry olivine (Karato 1986)

Qd = 290e3; % [J/mol ]

Ad = 7.7e-8; % [Pa-1/s-1/mm^3 ]

d = 0.1; % [mm ]

% Powerlaw creep parameters for dry olivine (Karato and Jung 2003)

Qp = 510e3; % [J/mol ]

Ap = 1.26e-12; % [MPa-3/s-1 ]

n = 3; % [ ]

% Peierls mechanism parameters (Regenauer-Lieb & Kohl 2003)

str_rate0 = 5.7e11; % [s^-1 ]

Ha = 536e3; % [J/mol ]

sigma_0 = 8.5e9; % [Pa ]

case ’Olivine_wet’

% Diffusion creep parameters for wet olivine (Karato 1986)

Qd = 290e3; % [J/mol ]

Ad = 1.5e-9; % [MPa-1/s-1/mm^3 ]

d = 0.1; % [mm ]

% Powerlaw creep parameters for wet olivine (Karato and Jung 2003)

Qp = 470e3; % [J/mol ]

r = 1.3; % [ ]

COH = 4000; % [ppm H/Si ]

Ap = 3.63e-18*COH^r; % [Pa-3/s-1 ]

n = 3; % [ ]

% Peierls mechanism parameters (Regenauer-Lieb & Kohl 2003)

str_rate0 = 1.2e12; % [s^-1 ]

Ha = 498e3; % [J/mol ]

sigma_0 = 9.1e9; % [MPa ]

otherwise

error(’Flowlaw type is unknown.’)

end

% Compute parameters with T+1 (needed to compute gamma):

[str_rate_creep_T1, str_rate_diff, str_rate_pow, str_rate_pei] = ...

Flowlaws(stress, T+1, R, Qd, Ad, d, Qp, Ap, n, str_rate0, Ha, sigma_0);

% Compute parameters with given T:

[str_rate_creep, str_rate_diff, str_rate_pow, str_rate_pei] = ...

Flowlaws(stress, T, R, Qd, Ad, d, Qp, Ap, n, str_rate0, Ha, sigma_0);

% Compute parameters like gamma and initial effective viscosity.

mu_eff_T1 = stress./str_rate_creep_T1./2;

mu_eff = stress./(str_rate_creep*1e10)./2; mu_eff=mu_eff*1e10;

gamma = -log(mu_eff_T1./mu_eff)./1;

if nargin>3

% Yield stress with the given background strainrate (this expression is only valid for temperatures <1000):

Fac = (R*T./Ha.*log(sqrt(3)./2.*str_rate0./str_rate_bg)).^(0.5);

sigma_y = sigma_0./sqrt(3).*(1 - Fac );

sigma_y(find(Fac>=.99)) = 10000e6;

end

% Estimate the effective viscosity which best matches the model.

mu_eff_best = mu_eff;

if nargin>3

stress = [str_rate_bg./[(3.^((n+1)./2))./2.*Ap.*exp(-Qp./R./T)]].^(1/n);

if stress<sigma_y

mu_eff_best = stress./str_rate_bg./2; %effective viscosity for powerlaw rheology

else

mu_eff_best = mu_eff;

end

end

%=====================================================================================================================

function [str_rate_creep, str_rate_diff, str_rate_pow, str_rate_pei] = ...

Flowlaws(stress, T, R, Qd, Ad, d, Qp, Ap, n, str_rate0, Ha, sigma_0);

% Computes the flowlaw for olivine parameters

str_rate_diff = 3./2.*Ad.*d^(3).*exp(-Qd./R./T).*stress; % Diffusion creep strainrate

str_rate_pow = (3.^((n+1)./2))./2.*Ap.*stress.^(n).*exp(-Qp./R./T); % Powerlaw creep strainrate

str_rate_pei = sqrt(3)./2./stress.*str_rate0.*exp(-Ha./R./T.*(1 - sqrt(3).*stress./sigma_0).^2).*stress; % Peierls

str_rate_pei(find(stress<100e6))= 0; %Peierls plasticity is only applicable at large stresses

% Total strainrate

str_rate_creep = str_rate_diff + str_rate_pow + str_rate_pei;

Figure 4.14: The MATLAB script Olivine.m which can be used to compute the rheology
of wet and dry olivine at given temperature and pressure conditions. The script also outputs
µ0, γ and σy for use in the simplified rheological model.
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function [T_vec,Tau_vec,time] = ...

ODE_VEP(Sigma_yield, str_rate, Br, T, Tmax,eps, Rheology, ShearType, Temp_init, Stress_char, Temp_char)

%==============================================================================================================

% ODE_VEP.M

%

% 0D time evolution of a visco-elasto-plastic body deformed under constant strainrate.

%

% 2004, Boris Kaus and Yuri Podladchikov

%

% Initialization

dTdt_vec = [0,0];

Tau = 1;

Tau_vec = [1];

ShearHeat_vec = [0];

T_vec = T;

time = 0;

dT_dt = Br*Tau*str_rate;

dt = min(eps*(abs(T)+eps)/(abs(dT_dt)+eps),eps);

keepgoing = 1;

Tau_new = Tau;

T_new = T;

switch ShearType

case ’Simple Shear’

fs = 1;

case ’Pure Shear’

fs = 2;

otherwise

error(’Unknown Shear Type’)

end

while keepgoing == 1

switch Rheology

case ’Frank_Kamenetzky’

%Linear exponential case

mu_eff = exp(-T);

otherwise %Fully nonlinear case for olivine

[str_rate_creep, str_diff, str_pow, str_pei, mu_eff0, gamma] = ...

Olivine(( Temp_init)*Temp_char, 1 *Stress_char,Rheology);

[str_rate_creep, str_diff, str_pow, str_pei, mu_eff , gamma] = ...

Olivine((T_new +Temp_init)*Temp_char, Tau_new*Stress_char,Rheology);

mu_eff = (mu_eff/mu_eff0);

end

Tau_new = min( mu_eff*(Tau + 2*str_rate*dt)/(mu_eff+dt), Sigma_yield); %Stress evolution

str_el = (Tau_new-Tau)/dt/2; %Elastic strainrate

dT_dt = fs*Br*Tau_new*(str_rate-str_el); %Thermal evolution

ShearHeat = Tau_new*(str_rate-str_el);

T_new = T + dt*dT_dt;

if abs( T_new - T) < eps*(1+abs( T_new)+abs( T)) ...

& abs(Tau_new - Tau) < eps*(1+abs(Tau_new)+abs(Tau))

% Accept current timestep

T = T_new;

Tau = Tau_new;

% Exit criteria

if T > Tmax

dtc = (T-Tmax)/(T-T_vec(end));

T = T - dtc*(T - T_vec(end));

Tau = Tau - dtc*(Tau - Tau_vec(end));

dt = dt*(1 - dtc);

keepgoing = 0;

end

dTdt_vec = [dTdt_vec,dT_dt];

Tau_vec = [Tau_vec,Tau];

T_vec = [T_vec,T];

time = [time,time(end)+dt];

ShearHeat_vec = [ShearHeat_vec, ShearHeat];

if abs( T_new - T) < eps/10*(1+abs( T_new)+abs( T))

% Increase the timestep

dt = dt*1.01;

end

else

% Do not accept the current step and decrease the timestep

dt = dt/2;

end

% plotting

if mod(length(time),1000)==0

figure(1), clf

subplot(211),plot(time,Tau_vec,’-x’),ylabel(’\tau\sigma_0’),xlabel(’t/[\mu_0/G]’)

subplot(212),plot(time,T_vec),ylabel(’T’), xlabel(’t/[\mu_0/G]’)

drawnow, pause(1/10)

end

end

Figure 4.15: The MATLAB script ODE VEP.m which integrates eq. (4.17) versus time
under constant strainrate boundary conditions.
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%ODE_VEP_real_start

%compute stress evolution in a lithosphere with ’real’ parameters

clear;

% Insert values in dimensional units

Sigma0_dim = 1e6; % Starting stress [Pa ]

T0_dim = 600; % Starting temperature [C ]

G_dim = 5e10; % elastic shear module [Pa ]

str_rate_dim = 3e-15; % Background strainrate [1/s ]

kappa_dim = 1e-6; % Diffusivivity [m2/s ]

rho_cp_dim = 3e6; % density*heat capacity [Jm2K/s ]

T0_dim = T0_dim+273; % Temperature in Celcius

ShearType = {’Simple Shear’,’Pure Shear’}

ShearType = ShearType{2}; % Type of shear

eps = 1e-2; % Accuracy of the solver

Tmax = 5; % T-increase to terminate solver [K ]

R = 3000; % Size of heterogeneity [m ]

Rheology = ’Olivine_dry’; % Dry Olivine model

% Compute characteristic values at given stress, temperature and strainrate levels=============================

% Compute characteristic values at temperature=T0_dim and Stress=Sigma0_dim

[str_rate_creep, str_diff, str_pow, str_pei, mu0, gamma, Sigma_y,mu_best] = ...

Olivine(T0_dim, Sigma0_dim, Rheology,str_rate_dim);

% Compute chracteristic values and non-dimensional numbers

Stress_char = Sigma0_dim;

Time_char = mu0/G_dim;

Temp_char = 1/gamma;

Length_char = sqrt(kappa_dim*Time_char);

Str_rate_char = 1./Time_char;

Visc_char = Stress_char*Time_char;

Br = 0.5*Sigma0_dim^2*gamma/rho_cp_dim/G_dim;

Bvis = 2*mu0*str_rate_dim/Sigma0_dim;

Bpl = Sigma0_dim/Sigma_y;

Pe = R/Length_char;

%==============================================================================================================

% % Compute some solver-specific values

Temp_init = T0_dim/Temp_char;

T = 0; % Initial temperature [ ]

Tau = 1; % Initial stress [ ]

Sigma_yield = 1e10; % Not used with real data [ ]

str_rate = Bvis/2; % Background strainrate [ ]

Tmax = Tmax/Temp_char; % Solver termination [ ]

% Compute the time-evolution for the dry-olivine rheological model=============================================

[T_vec1,Tau_vec1,time1] = ODE_VEP(Sigma_yield, str_rate, Br, T, Tmax, eps, ...

Rheology, ShearType, Temp_init, Stress_char, Temp_char);

% Transform non-dimensional values to dimensional ones

Stress_vec_dim1 = Tau_vec1.*Stress_char;

Temp_vec_dim1 = (T_vec1+Temp_init).*Temp_char-273;

Time_vec_dim1 = time1.*Time_char;

Myrs = 1e6*365*24*3600;

%==============================================================================================================

% Compute the time-evolution for the simplified rheological model==============================================

mu0 = mu_best; %Take the ’best estimate viscosity’ as scale

Time_char = mu0/G_dim;

Bvis = 2*mu0*str_rate_dim/Sigma0_dim

Temp_init = T0_dim/Temp_char;

T = 0; % Initial temperature [ ]

Tau = 1; % Initial stress [ ]

str_rate = Bvis/2; % Background strainrate [ ]

Rheology = ’Frank_Kamenetzky’; % Simplified model

Sigma_yield = Sigma_y/Stress_char; % Yield stress must be specified for simplified model

[T_vec2,Tau_vec2,time2] = ODE_VEP(Sigma_yield, str_rate, Br, T, Tmax, eps, ...

Rheology, ShearType, Temp_init, Stress_char, Temp_char);

Stress_vec_dim2 = Tau_vec2.*Stress_char;

Temp_vec_dim2 = (T_vec2+Temp_init).*Temp_char-273;

Time_vec_dim2 = time2.*Time_char;

Myrs = 1e6*365*24*3600;

%==============================================================================================================

% Visualization

figure(1),clf

subplot(211),

plot(Time_vec_dim1/Myrs*1000,Stress_vec_dim1/1e6,’r--’,Time_vec_dim2/Myrs*1000,Stress_vec_dim2/1e6,’b-’);

ylabel(’\tau [MPa]’)

title([’ log10(B_{pl})=’,num2str(log10(Bpl)),’ log10(Br)=’,num2str(log10(Br)),’ log10(B_{vis})=’,num2str(log10(Bvis))])

legend(’Olivine’,’Simplified rheology’)

grid on

subplot(212)

plot(Time_vec_dim1/Myrs*1000,Temp_vec_dim1,’r--’,Time_vec_dim2/Myrs*1000,Temp_vec_dim2,’b-’)

ylabel(’ T [^oC]’)

xlabel(’time [1000 yrs]’)

grid on

Figure 4.16: The MATLAB script ODE VEP real start.m which should be used together
with ODE VEP.m.
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Chapter 5

Forward and reverse modelling of
the three-dimensional viscous
Rayleigh-Taylor instability1

Abstract A combined finite-difference/spectral method is used to model the 3D

viscous Rayleigh-Taylor instability. Numerically calculated growth rate spectra are

presented for an initial sinusoidal perturbation of the interface separating two fluids

with amplitude 10−3H and 0.2H , where H is the height of the system. At small initial

amplitude, growth rate spectra closely follow linear theory, whereas the calculation

with higher initial amplitude shows wavelength selection towards 3D perturbations.

Numerical simulations and analytical theory are used to evaluate the applicability

of previous 2D numerical models, which is shown to depend on (1) the wavelength

and amplitude of an initially 2D sinusoidal perturbation and (2) the amplitude of

background noise. It is also shown that reverse (backward) modeling is capable of

restoring the initial geometry as long as overhangs are not developed. If overhangs are

present, the possibility of restoring the initial conditions is largely dependent on the

stage of overhang development.

1This work has been published in slightly modified form in: Kaus, B.J.P, Podladchikov, Y.Y.
(2001) Forward and reverse modeling of the three-dimensional viscous Rayleigh-Taylor instability,
Geophysical Research Letters Vol.28, No.6, p.1095-1098.
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5.1 Introduction

The Rayleigh-Taylor (RT) instability arising when a heavier fluid overlies a fluid with

lower density has attracted attention of the Earth science community for some time.

There are a numerous situations, where a RT-type model is applicable to nature. Ex-

amples are batholiths [Pons et al., 1992], salt tectonics [Podladchikov et al., 1993],

and convective thinning of the lithosphere [Houseman and Molnar, 1997]. The RT

instability has been intensively studied by laboratory experiments [e.g. Talbot et al.,

1991], analytical methods [linear and nonlinear stability analysis, e.g. Ribe, 1998, Con-

rad and Molnar, 1997] and numerical simulations [e.g. Schmeling, 1987, Podladchikov

et al., 1993]. Numerical calculations of the viscous RT instability, however, have been

restricted to the 2D case, mainly because of limited computational power. Three-

dimensional numerical simulations have been reported, but were done for viscous fluids

with inertial forces [e.g. He et al., 1999]. In this paper, forward and reverse numerical

simulations of the 3D viscous RT instability in absence of inertial forces are presented.

5.2 Mathematical model and numerical

method

The Rayleigh-Taylor instability for the slowly creeping flow of viscous incompressible

Newtonian fluids with constant viscosity is described by the Stokes system of equations,

which are given by:

∂Vi

∂xi

= 0 (5.1)

−∂P

∂xi

+ µ∆Vi + ρgi = 0 (5.2)

where P is pressure, Vi = (u, v, w) is velocity, xi = (x, y, z) are coordinates, µ=viscosity,

gi = (0, 0,−g) is the gravitational acceleration and ρ is the density of the fluid. Non-

dimensionalization was done taking H, H2g∆ρ/µ,Hg∆ρ and µ/Hg∆ρ as characteristic

length, velocity, pressure and time respectively, where ∆ρ is the density difference

between the upper and lower fluid. The equations (5.1-5.2) are solved here for a

Cartesian box with height H and an aspect ratio of 5:5:1. The boundary conditions
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are periodic for the lateral directions and no-slip on the upper and lower boundaries.

The numerical method used for solving Eqns. 5.1-5.2 is a 3-D extension of the method

used by [Schmalholz and Podladchikov, 1999] to model folding instabilities. It uses a

spectral method for the horizontal directions and a conservative finite difference method

on a regular grid for the vertical direction. The interface-tracking algorithm is a 3-D

extension of the particle-line method described in Ten et al. [1998]. The interface is

moved through time using an implicit time-marching scheme with adaptive time-step.

Lines are added if the distance between two adjacent lines exceeds a given threshold. A

resolution of 128×128 harmonics in horizontal direction and 513 grid points in vertical

direction was used for the simulations shown in figures 2 and 4, and a resolution of

64×64×257 for all other simulations. The numerical code runs on a single Pentium II,

400 MHz processor and needs approximately 200MB of RAM and 8-10 hours of CPU

time for the lower resolution simulations and 1GB of RAM and 7 days of CPU time

for the high resolution simulations presented here.

5.3 Infinitesimal and finite growth rate calculations

An unstable system consisting of two superposed immiscible fluid layers each of thick-

ness 0.5 and same viscosity is considered. Infinitesimally initial perturbations on the

interface separating the two fluids grow exponentially with time according to the rela-

tion A(t) = A0 exp(qt), where A0 is the initial amplitude, q is the growth rate and t

is time, which can be calculated using a linear stability analysis [e.g. Chandrasekhar,

1961, Conrad and Molnar, 1997, Turcotte and Schubert, 1982] The initial spatial per-

turbations on the interface are split into a series of “normal modes”:

zint(x, y) = 0.5 + dhintcos(kxx)cos(kyy) (5.3)

where kx = 2π/λx and ky = 2π/λy are wavenumbers in the x - and the y-direction

respectively, λx and λy are wavelengths in x - and y-direction, and dhint is an in-

finitesimally amplitude (dhint¿λx ,λy). Each of these normal modes can be analyzed

separately and has a non-dimensional growth rate q :

q =
(k2 + 2)e−k − e−2k − 1

4k[−2ke−k + e−2k − 1]
(5.4)
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Figure 5.1: Contour plot of numerically calculated dimensionless growthrate q of a sinusoidal
perturbation of the interface with an initial amplitude dh of A) 10−1 and B) 0.2. See text
for explanation.

where k=
√

k2
x + k2

y. The growth rate has a maximum of q≈0.03835 if k≈4.895. Note

that Eq. (5.4) includes the 2D solution [e.g. Turcotte and Schubert, 1982] as a special

case, i.e. ky=0. According to the linear stability analysis, which is only valid for very

small perturbations of the interface, purely 2D waveforms have the same growth rate

as an infinite number of 3D waveforms (composed by linear superposition of normal

modes having wave number vectors of same length but different orientation). Thus a

weakly nonlinear analysis is needed to constrain the pattern selection [Ribe, 1998], a

situation similar to the Rayleigh-Bénard instability [see e.g. Godreche and Manneville,

1998, for discussion]. The growth rate q can also be calculated numerically by assum-

ing a similar initial sinusoidal perturbation but of finite amplitude dh. The result of

such a calculation is shown in figure 5.1. For initial amplitude of dh=10−3, the numer-

ically calculated growth rate approaches the analytical growth rate (Eqn. 5.4) with an
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accuracy of 1% (Fig. 5.1A). However, calculations using larger initial amplitude (e.g.

dh=0.2, Fig. 5.1B) show a clear selection towards more 3D (λx=λy) normal mode

perturbations. This result is in general agreement with the analytical calculations of

[Ribe, 1998].

5.4 Forward modeling results

To study the competition between 2-D and 3-D initial perturbations, and thus to test

the validity of previous 2-D numerical simulations, we performed a forward simulation

of an initial (non-dominant) 2-D sinusoidal perturbation of the form zint(x , y) = 0.5

- 10−2cos(2πx/5 ) with normally distributed (white) noise with a variance of 5×10−4.

Two-dimensional numerical simulations by Schmeling [1987] showed already that such

a configuration is unstable and leads to the breakup of the initial perturbation. This

was also observed in our three-dimensional simulation, with the difference that the

initial 2D perturbation decomposes into irregular 3-D structures (fig. 5.2). A two-

dimensional Fourier transform of the interface revealed that the simultaneous growth

and superposition of several dominant 3D normal modes is responsible for the develop-

ment of irregular 3D structures. A rough estimate of the survival of initial sinusoidal

2D perturbations vs. dominant normal modes growing out of the background noise can

be made by using linear stability growth rates. The growth in amplitude of an initial 2-

D perturbation can be expressed A2D(t) = A2D
0 e(qt), whereas that of a dominant mode,

growing out of noise, is Adom(t) = Adom
0 e(qdom t). We define the characteristic time t∗ as

the time needed for an initial perturbation to reach an amplitude of 0.5. The initial

perturbation survives if A2D(t∗) > Adom(t∗). This condition can be written as:

ln(A2D
0 /0.5)

ln(Adom
0 /0.5)

<
q

qdom

(5.5)

where qdom≈0.03835 and q is calculated from linear stability analysis (Eqn. 5.4). Full

numerical simulations are in good agreement with the prediction of equation 5.5 and

show that breaking up of the initial 2D perturbation leads in most cases to a 3D

geometry (see fig. 5.4). Equation 5.5 can thus be used to predict if an initial 2-D

perturbation will survive or breaks up into 3-D structures.
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Figure 5.2: Forward simulation of a RT instability for an initial two-dimensional perturba-
tion of the interface with an amplitude of 10−2 with addition of normally distributed random
noise with a variance 5 × 10−4. Numbers at the top are nondimensional times, colors show
relative heights of the interface.
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Reverse simulation starting from t=255 in the forward simulation. (C) Reverse simulation
starting from t=170 in the forward simulation. (D) Reverse simulation which started from
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5.5 Reverse modeling results

Inverse modeling is of major practical importance [Bennett, 1992, Marchuk, 1982] and

reverse modeling of 3-D diapiric structures is of special interest for earth scientists (e.g.

3D restoration of salt domes). Reverse modeling was done, using the same numerical

code as for forward simulations, but with negative timesteps. Four reverse simulations,

started at different stages, recovered the 2-D initial perturbation (Fig. 5.5). Similar

simulations showed that 1) reversing with a lower resolution (64×64×257) than that

of the forward model gives approximately the same results, 2) the adding of lines

to the interface, done in forward simulations, produces interpolation errors, which

cumulate during reverse modeling and 3) these errors are even larger if overhangs are

present. We thus speculate that restoration errors are partly due to cumulative growth

of numerical errors and partly of physical origin. The physical origin of the noise effects

can be explained by noting that the growth rate of the numerical errors during forward

simulations is given by Eqn. 5.4. The amplitudes of the errors grow exponentially (q >

0 for all wavelengths), but slower than the true physical (dominant) modes. Conversely,

during forward modeling of stably stratified fluids or reverse modeling of initial stages

of the RT instability (when overhangs are not developed yet), the numerical errors
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decay exponentially with a rate governed by eqn. 5.4, but q < 0 . Therefore, it is to

be expected that the reverse modeling of the RT instability is numerically more stable

than the forward modeling (see also Fig. 5.5). However, development of overhangs

drastically changes the situation. The overturned layers are stably stratified and their

modeling is better posed for the forward simulations then for the reverse ones. Small

perturbations at the lower side of an overhang, which are due to the remeshing of the

interface, start amplifying during reverse simulations. Reversing of the RT instability

is thus difficult if overhangs are developed and the success of recovering the initial

conditions depends on the stage of overturn development. The most extreme case would

be a fully developed overturn (complete stable stratification), from which reversing will

no longer recover the initial perturbation.

5.6 Conclusions

We present fully dynamical numerical simulations of the 3D viscous RT instability.

Forward simulations show that an initial 2D perturbation may decompose into 3D

structures if the amplitude of background noise is high compared to the amplitude of

the 2D perturbation. We quantified the 2D-3D transition, using linear stability theory

(Eq. 5.5). Numerical simulations show good agreement with this prediction (Fig. 5.4).

Reverse (backward) modeling of the RT instability is capable of restoring the initial

2D conditions from intensively deformed 3D structures. However, the accuracy of the

reverse model deteriorates if overhangs are prominent in the 3D structures because the

overhangs result in a stable configuration with little memory of the initial conditions.
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Figure 5.5: Cartoon explaining the numerics and physics of the RT instability. Starting
with a physically unstable situation, two cases can occur numerically: a forward run (positive
timestep) will result in the RT instability which has -in 2D- one wavelength that grows with
a maximum, but finite, speed. This wavelength will be ’filtered’ and survives during late
stages. All growthrates are positive and thus numerically instable. Reverse modeling, on
the other hand, results in negative growthrates. Small perturbations decay exponentially
fast and this case is numerically stable. The diffusion equation, on the other hand, does
not have a maximum or minimum growthrate (infinitely small wavelengths decay infinitely
fast during forward runs). Reverse modeling of the diffusion equation will amplify these
small wavelengths infinitely fast and will thus lead to numerical blowup. Therefore the RT
instability is numerically reversible but the diffusion equation is not.
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Chapter 6

Transition from exponential to
buoyancy-controlled diapirism.

Abstract

The transition from the initial to the finite amplitude stages of a 3D diapir are

studied numerically. During initiation, the amplitude growth of the high/low density

fluid interface versus time is exponential or slightly super-exponential, in agreement

with (non-) linear stability theory. At some stage, however, growth becomes linear

with time and is described by the Stokes equation for a sphere rising through a viscous

media. A simple theory is proposed to link the initial stages to the later stages of diapir

development. The difference between 2D and 3D perturbations is studied, which shows

that 2D perturbations rise slower than 3D perturbations during the later stages. For a

3D perturbation to behave like a 2D structure, dominant mode aspect ratios in excess

of 100 are required.

6.1 Introduction

Diapirism is a process relevant to several geodynamic processes, for example salt tec-

tonics and mantle plumes. Therefore, a large number of experimental, numerical and

analytical work has been devoted to study the instability of a low-density fluid under-

lying a higher-density fluid. These studies can be essentially divided into two groups:

(1) those that concentrate on the initiation stage, which can be described by the lin-

ear or non-linear Rayleigh-Taylor instability theory [e.g. Chandrasekhar, 1961, Danes,
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1964, Whitehead and Luther, 1975, Canright and Morris, 1993, Ribe, 1998], (2) those

that concentrate on late stages, once a plume has been fully developed with a spher-

ical, inflating head [e.g. Whitehead and Luther, 1975, van Keken, 1997]. Little work

has been dedicated to the intermediate stages, i.e. linking initial with fully developed

plume stages. An exception is the work of Bercovici and Kelly [1997], who employed a

simplified lubrication theory valid for large viscosity contrasts.

The linear stability analysis predicts that the amplitude of a perturbation should

increase exponentially with time. Nonlinear effects may even induce super-exponential

(faster) growth [e.g. Ribe, 1998]. According to these theories, the velocity of the per-

turbation (derivative of amplitude versus time) should thus increase exponentially with

time, which would result in supersonic speeds if scaled to the Earth’s mantle. Whereas

such a situation may occur of one of the fluids is inviscid, the finite viscosity of rocks

and materials used in laboratory experiments causes a drag on the plume-head and

limits its velocity. The falling or rising of spherical objects through viscous or power-

law fluids is known to be mainly dependent on the viscosity of the surrounding fluid

and the radius of the sphere [e.g. Stokes, 1851, Happel and Brenner, 1975, Weinberg

and Podladchikov, 1994]: its velocity is constant and known as the Stokes velocity.

The Stokes velocity is thus the upper limit for the velocity of an object rising through

viscous fluids. It is however not clear how to link the initial (exponential) stages to

the fully-developed stages. The goal of this chapter is to make this link. For the sake

of simplicity, we concentrate on linear viscous rheologies.

6.2 Model and methods

We assume the fluids to be incompressible and slowly moving (negligible inertial terms).

The rheology is linearly viscous. In this case the governing equations are

∂vi

∂xj

= 0 (6.1)

∂σij

∂xj

= ρg~ez (6.2)

σij = −Pδij + µ

(
∂vi

∂xj

+
∂vj

∂xi

)
(6.3)
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where vi is velocity, xj spatial coordinates, σij are stresses, g the gravitational accelera-

tion acting in the vertical direction, ρ is density and P = −σii

3
is pressure. Our analysis

is isothermal, 3D, and restricted to an isoviscous system with two fluids of different

density. Time evolution of the interface Γ(x, y) between the two fluids is computed

according to:
∂Γ(x, y)

∂t
+ vi∇Γ(x, y) = 0 (6.4)

The numerical method is a finite-difference/spectral method [Kaus, 2000, Kaus and

Podladchikov, 2001] which employs a Fourier spectral approximation in the horizontal

direction and a conservative finite-difference method in the vertical direction. The

interface is described by a triangular surface, which allows an accurate setting of initial

perturbation and monitoring of the late-stage behavior. The method is essentially

identical to that described in Schmalzl and Loddoch [2003]. An adaptive, implicit time

stepping strategy is employed. The code reproduces linear-stability growthrates with an

accuracy > 0.5% and has been verified versus Stokes flow. A no-slip (vz = vx = vy = 0)

lower boundary condition and a flat stress-free upper boundary (τzz = τxz = τyz =

0) condition are employed. Non-dimensionalization is done by using H (height of

computational domain) as characteristic length, µ2 (viscosity of low density material)

as characteristic viscosity, which gives H2g(ρ2 − ρ1)/µ2, Hg(ρ2 − ρ1), µ2/Hg(ρ2 − ρ1)

as characteristic velocity, pressure and time, respectively.

6.3 Initial stages

The classical linear stability analysis assumes that the interface between two fluids

of different density is horizontal and perturbed with a sinusoidal perturbation of in-

finitesimally small amplitude. A perturbation will grow in amplitude according to

A(t) = A0e
qt, where q is the growthrate, which depends on factors like the wave-

length of the 2-D perturbation, viscosity contrast, density difference, layer thickness

etc. In a 2-D case one wavelength exists, called the dominant wavelength, for which

the growthrate is maximum. Numerical simulations, starting from low-amplitude ran-

dom noise, indicate that this wavelength will indeed be most pronounced during later

stages. Figure 6.1 shows the dominant wavelength and growthrate for different vis-

cosity contrasts and layer thicknesses. Three domains can be distinguished for the

given parameters. Here we focuss on thin layers, where two limiting cases can be
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Figure 6.1: Dominant growthrate and dominant wavelength versus layer thickness and
viscosity contrast for velocity-free lower boundary and a stress-free upper boundary.

distinguished. The hard-film limit (highly viscous thin layer) is characterized by the

following dominant wavelength and growthrate dependencies:

qmax = 0.16
H(ρ1 − ρ2)g

µ2

Hi

H
(6.5)

λdom

H
= 2.95

Hi

H
(6.6)

The soft-film limit (thin, low viscosity layer) has asymptotic expressions

qmax = 0.14
H(ρ1 − ρ2)g

µ2

Hi

H

(
µ1

µ2

)− 2
3

(6.7)

λdom

H
= 2.80

Hi

H

(
µ1

µ2

) 1
3

(6.8)

These dominant wavelength expression have been derived for a two-dimensional setup

with a perturbation of the form Γ = Hi + A0 cos (2π/λxx). It has been shown [see

e.g. Biot, 1966, Ribe, 1998] that the dominant growthrate is identical in a 3D setup

with a perturbation of the form Γ = Hi + A0 cos (2π/λxx) cos (2π/λyy) as long as no

background compression or extension is exerted. Instead of one dominant wavelength,

however, the 3D case has an infinite number of dominant modes. These modes can be
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computed from the 2D dominant wavelength as
(

2π

λdom

)2

=

(
2π

λx

)2

+

(
2π

λy

)2

(6.9)

Nonlinear perturbation analysis [Whitehead and Luther, 1975, Ribe, 1998] and nu-

merical simulations [Kaus and Podladchikov, 2001], show that the infinite number of

dominant wavelengths are a consequence of the assumption of infinitesimally small

perturbations. In fact, purely 3D modes(with λx = λy) amplify slightly faster than

modes with large aspect ratios.

6.4 Finite amplitude effects

Figure 6.2 shows the evolution of the maximum amplitude of the interface versus time.

Thin layers undergo a transition from initially exponential growth to linear growth

during the later stages. This linear growth, when velocity reaches a maximum, suggests

that late stages may be described by the Stokes equation, which is given by [e.g. Stokes,

1851, Happel and Brenner, 1975, Weinberg and Podladchikov, 1994]:

Vstokes =
1

3

(ρ1 − ρ2)gR2

µ2

(
µ2 + µ1

µ2 + 3
2
µ1

)
(6.10)

where R is the radius of the sphere. However a plume is not a perfect sphere, at least

for the constant viscosity case shown on figure 6.2. Thus what is the appropriate radius

R matching the observed velocity? Two different methods are available to estimate

R. The first method one consists in matching the observed velocity with Vstokes. The

second method is based on a volume argument. If the initial sinusoidal perturbation has

the form Γ(x, y) = Hi +A0 cos( 2π
λx

x) cos(2π
λy

y), the volume of material that will form the

head and tail of the plume is roughly given by Vgeom = λyλxHi. Under the assumption

that all this material enters a spherical plume-head, its radius can be estimated by

conservation of mass

Rgeom =

(
3λyλxHi

4πH3

) 1
3

(6.11)

Since ’real’ plumes do not always have a perfectly spherical shape, there is a differ-

ence between the geometrically obtained radius, Rgeom and the radius obtained from

velocity computations:

R = CRgeom (6.12)
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3D 2Dlinear
theory

Figure 6.2: Late stage behavior of the amplitude versus time. During the initial stages,
growth is exponential. Thin layers, however, exhibit linear growth during later stages. 2D
perturbations amplify slower then 3D perturbations in all cases.

here C is a correction factor, which depends on viscosity contrast, shape of the diapir,

layer thickness etc. We have numerically determined the correction factor C, and found

that for the given boundary conditions and isoviscous material properties, C ' 0.356.

This value is appropriate for 3D dominant modes of aspect ratio λx/λy ≤ 10, and for

thin layers of maximum thickness Hi ≤ 0.2H. Thicker layers do not exhibit a clear

transition from exponential to linear growth (e.g. fig. 6.2). This fact allows us to

extend the linear stability theory by taking the finite, late-stage velocity into account.

The increase of amplitude versus time is given by

A(t) = A0 +

∫ t

0

V (t)dt (6.13)

The velocity is the minimum of the Stokes velocity and the velocity predicted by linear
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Figure 6.3: Comparison of the finite amplitude formulation with exponential theory and
3D numerical solution (with λx = λy = 0.53H) with a no-slip lower boundary and no-stress
upper boundary condition.

stability theory:

V (t) = min (Vexp(t), Vstokes) (6.14)

here Vexp(t) is the velocity obtained by the exponential linear stability theory

Vexp(t) = A0qe
qt (6.15)

and Vstokes is computed by combining eqs. (6.10),(6.11) and (6.12). A comparison

between the simple finite amplitude theory and numerical results shows good agreement

(fig. 6.3). A similar agreement exists for dominant modes with an aspect ratio of up

to 10.

6.5 2D vs 3D

The simple theory outlined above is only valid for 3D structures. Two-dimensional

structures of the form Γ = Hi + A0 cos (2π/λxx) rise slower then 3D ones, which may
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Figure 6.4: Effect of aspect ratio (defined as Ra = λx/λy) of initial sinusoidal perturbation
growth of amplitude. 3D perturbations with aspect ratio 1 ≤ Ra ≤ 10 amplify faster then
3D perturbations with Ra = 1. 2D behavior requires Ra ≥ 100. µ1/µ2 = 1.

be attributed to the fact that cylinders have a larger surface area then spheres (fig.

6.2). But when can a 3D structure effectively be regarded as a 2D one in terms of its

rising velocity? In order to understand this, a number of 3D simulations have been

formed with dominant modes of increasing aspect ratio Ra = λy/λx. Results show that

very large aspect-ratios (Ra > 100) are required to approximate 2D behavior (fig. 6.4).

Unfortunately, a simple equation of the form (6.10) does not exist for the rising ve-

locity of cylinders in low-Reynolds number fluids (this is known as the Stokes paradox,

see e.g. Happel and Brenner [1975]), precluding the derivation of a simple 2D finite

amplitude theory.

6.6 Discussion and conclusions

Three-dimensional numerical simulations show that the finite amplitude behavior of

diapirs rising from a thin source layer deviates significantly from that predicted by the

linear stability theory. Rather than increasing exponentially with time, the velocity of
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the diapirs becomes approximately constant after a finite amount of time. A simple

theory combines the Stokes velocity and the exponential theory, and fits the numerical

data with an acceptable accuracy. Numerical simulations also show that purely 2D

(linear) modes amplify slower then 3D modes. Only 3D modes with aspect ratios

λx/λy > 100 will behave as a 2D mode. This result indicates that 2D simulations may

underestimate the rising velocity of plumes, or the rate of lithospheric delamination.

An obvious limitation of the present work is its restriction to isoviscous flows.

Previous workers, concentrating on thin, highly viscous, 2D layers did not observe a

slowing-down of velocity and rather predicted an over-exponential growth which ulti-

mately resulted in an amplitude ’blow-up’ [e.g. Houseman and Molnar, 1997]. Bercovici

and Kelly [1997] studied the initiation of a diapir from a thin, low-viscosity layer. They

demonstrated, using simplified analytical theory and laboratory experiments, that a

’stalling’-period exist between the exponential and the Stokes-rising stages, which has

not been observed here for isoviscous cases. None of the mentioned studies compared

the transition from 2D to 3D modes.

More work is obviously necessary to better understand the effect of viscosity con-

trasts on the breakdown of exponential growth.
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Chapter 7

2-D and 3-D pattern formation of
the viscous Rayleigh-Taylor
instability: a numerical study

Abstract The Rayleigh-Taylor (RT) instability arises when a high density fluid

overlies a fluid of lower density. This density-driven instability may be significant for a

set of geological processes ranging from lithospheric delamination to pluton emplace-

ment and the formation of load-cast structures. This work focuses on 2-fluid models.

We study the effects of boundary conditions (no-slip, free-slip, no-stress, fast-erosion)

on the geometries that develop in two dimensions. Whereas no-slip, free-slip and no-

stress boundary conditions result in similarly looking, mushroom-shaped structures,

a fast-erosion boundary condition results in chimney-like structures. We also study

the patterns and structures that form in 3D settings. In this case, a linear stability

analysis predicts an infinite number of dominant modes that amplify with nearly iden-

tical rates. Linear superposition of these dominant modes results in complex-looking

patterns. A fast-erosion upper boundary condition triggers the formation of finger-like

structures, which in map-view, range from circular, to curved and elongated. If an

initial 2D perturbation is imposed at the interface between the two boundaries, 2D

wall-like structures may form. We explore the transition from wall-like to finger-like

structures, and show that an intermediate mode exist of aligned 3D diapirs. All 3D

modes grow with a rate predicted by linear stability analysis.
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5 km

A B

Figure 7.1: A) Seismic interpretation of salt structures (red) in the western Central Graben
(North Sea). Diapirs are up to 8 km in height. [adapted from Davison et al., 2000a]. B)
Cartoon illustrating different salt structures [from Twiss and Moores, 1992].

7.1 Introduction

Salt diapirs occur in many sedimentary basins [e.g. Jackson et al., 1995, Alsop et al.,

1996] in which salt often intrudes overlying rocks, and may form a number of different

structures, ranging from finger-like, to mushroom or wall-like (e.g. fig. 7.1). Structures

of similar type frequently occur in particular regions of a basin, which, in mapview, is

reflected in areas with linear or circular shapes (fig. 7.2). Many of the world largest

oil-reservoirs are closely linked to salt diapirs. This is partly related to the fact that salt

is impermeable to oil and gas which may be ’trapped’ below salt-overhangs. A deeper

understanding of the mechanisms that lead to the formation of these salt diapirs is thus

of both academic and economic interest. Therefore, many laboratory, experimental and

numerical studies have been dedicated to the mechanics of salt-dome formation [see e.g.

the books of Jackson et al., 1995, Alsop et al., 1996, for overview and many references].

The main difficulty in any model of salt diapir formation is the rheology of salt and

overburden. Whereas there seems to be consensus that salt behaves as a viscous fluid,

the rheology of the overburden is a matter of intense debate. Mainly two seemingly

opposing views exist: (1) models in which sediments above salt behave as viscous fluids

and (2) models in which the overburden behaves brittle. Both models have pros and

cons. The main purpose of the present work is to investigate the patterns that form in a

3D viscous model of salt-diapirism, in which the salt domes grow as a Rayleigh-Taylor

instability. There are two reasons to restrict the analysis to the viscous case. Firstly,

3D computations with a brittle rheology are much more expensive than computations

with a viscous rheology, due to severe time-step restrictions. Secondly, the 2D viscous

Rayleigh-Taylor (RT) instability is relatively well understood, whereas comparably
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A B

C

Figure 7.2: Salt domes patterns in A) The North Sea Zechstein basin [after Trusheim,
1960], B) Norwegian-Danish basin [from Hospers et al., 1988]. C) Dniepr-Donets basin [after
Stovba and Stephenson, 2003].

little theoretical work has been carried out on diapirism with a brittle visco-elasto-

plastic overburden. We will however discuss the applicability of our results in the light

of previous numerical work that employed a brittle overburden.

Previous numerical models of the RT-instability have mainly been two-dimensional

[e.g. Woidt, 1978, Schmeling, 1987, Romer and Neugebauer, 1991, Weinberg and Schmel-

ing, 1992, Zaleski and Julien, 1992, Poliakov and Podladchikov, 1992, Podladchikov

et al., 1993] with various complexities like erosion and sedimentation [Poliakov et al.,

1993b, Podladchikov et al., 1993], nonlinear rheologies [van Keken et al., 1993], brittle

overburden [Poliakov et al., 1993a, Daudré and Cloething, 1994, Poliakov et al., 1996],

differential loading [Gemmer et al., 2004], and dynamic restoration [Ismail-Zadeh et al.,

2001]. Only few workers [Kaus and Podladchikov, 2001, Ismail-Zadeh et al., 2004] have

studied the three-dimensional, viscous RT instability. Kaus and Podladchikov [2001]

have shown that relatively complex three-dimensional patterns may develop even if an

initially smooth two-dimensional perturbation, such as one caused by folding of the

interface between salt and overburden, is present. Ismail-Zadeh et al. [2004] showed

examples of how wall-like and mushroom-shaped diapiric structures may develop from
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various initial conditions. Their results, however, give little quantitative insight in why

these specific patterns develop. Three-dimensional pattern formation of the RT insta-

bility has been studied by means of analogue experiments [e.g. Talbot et al., 1991].

They observed spoke-like polygonal patterns and also pointed out the difficulty in

obtaining wall-like structures without strong 2D perturbations.

The results of this work are generally applicable to the Rayleigh-Taylor instability,

which has also been applied to mantle plumes [Whitehead and Luther, 1975], layered

intrusions [Gerya et al., 2003], gneiss domes [Fletcher, 1972], plutons [Miller and Pater-

son, 1999, Dietl and Koyi, 2002], loading structures [Anketell et al., 1970], lithospheric

delamination [e.g. Houseman and Molnar, 1997] and lower crustal convection [Gerya

et al., 2000, Jull and Kelemen, 2001].

7.2 Model and numerical methods

Several numerical codes are used in this work. All assume the materials to be incom-

pressible:
∂vi

∂xi

= 0 (7.1)

where vi denotes velocity and xi the spatial coordinates. Inertial terms are negligible

on geological timescales. Therefore, force balance is given by:

∂σij

∂xj

= ρg~ez (7.2)

where σij is stress, ρ density, g gravitational acceleration and ~ez the unit vector pointing

in the vertical direction. In this work, we further assume a linear viscous rheology:

σij = −Pδij + 2µε̇ij (7.3)

where P = −σ̄, ε̇ij = 1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
, µ is viscosity and the Einstein notation is used

throughout. The model domain consists of a 2-D or 3-D box of initial height H which is

filled with two fluids having a density difference ∆ρ. With µ1 being the viscosity of the

lower, low-density fluid, non-dimensionalization was done taking H,H2g∆ρ/µ1, Hg∆ρ

and µ1/(Hg∆ρ) as characteristic scales for length, velocity, stress and time, respec-

tively.
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Two-dimensional computations are performed with a newly-developed hybrid finite-

difference/spectral code (Gango), which solves the governing equations on an Eulerian

computational grid [Kaus et al., 2004]. At each timestep, the related density and

viscosity structures are computed from the markerlines. Timestepping is done with an

implicit method. The code has been extensively tested from 0D rheology tests, to stress

distributions around inclusions [e.g. Schmid and Podladchikov, 2003] and linear and

nonlinear stages of folding in viscous and viscoelastic materials. Relevant to the present

work are comparison with the linear stability theory of the RT-instability (see fig. 7.3)

and comparisons with results obtained with a recently developed two-dimensional finite

element code (SloMo).

The three-dimensional code (Diapir3D) also employs a spectral/finite-difference

primitive variables technique, with the difference that the finite difference scheme is

solved using only vz, rather then vz and σzz as unknowns. Horizontal directions are

approximated by a 2D Fourier expansion. Since viscosity varies only in the vertical

direction, the solution of the system of equations can be performed wavenumber-by-

wavenumber and the numerical method has a high performance. The interface between

the two fluids is represented by a triangular surface. At each timestep-iteration, the

3D density field is recomposed from this surface and the known location of the two flu-

ids [see Schmalzl and Loddoch, 2003, for a more thorough description of the method].

Velocity is computed for the given density distribution, and this velocity is used to

advect the surface. An implicit timestep algorithm is employed to accurately track the

initiation of the instability. The advantage of this method is that the interface between

the fluids always remains sharp. A disadvantage is that, due to numerical errors, the

amount of mass does not remain exactly constant throughout a simulation. The max-

imum change in mass is less then 0.5% during a typical model run, and therefore we

assume the method to be sufficiently accurate. Other widely employed methods in geo-

dynamics, like tracking of tracers [e.g. Tackley and King, 2003], or characteristic-based

methods [e.g. Ismail-Zadeh et al., 2004] also suffer from this problem. Furthermore,

the markerpoint method is expensive in 3D and the characteristic-based method allows

a less accurate determination of the interface deformation. Resolution tests have been

performed, that pointed out an additional advantage of the spectral methods used in

this work. Even at surprisingly low resolutions (e.g. 51×32×32), the main features of

the RT instability are catched. Increasing resolution has an almost negligible effect on
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the spacing of the diapirs. Accordingly, most runs presented here have been performed

for a resolution of 101× 128× 128.

7.3 2D simulations

In order to get a better understanding of the three-dimensional behavior of the RT-

instability, we will first give an overview of 2D numerical simulations and linear stabil-

ity theory. The results partly reproduce previous work [e.g. Woidt, 1978, Schmeling,

1987, Poliakov et al., 1993a] but the comparison between fast-erosion and free-surface

boundary conditions is new.

7.3.1 Linear stability analysis

A perturbation analysis is the classical way to study the Rayleigh-Taylor instability

[e.g. Chandrasekhar, 1961, Danes, 1964, Ribe, 1998]. The interface between the low-

density and the high-density fluids is assumed to be initially horizontal but with sinu-

soidal perturbations of infinitesimally small amplitude and wavelength λ. The analysis

shows that the amplification rate (called growthrate) of such a sinusoidal perturbation

depends on its wavelength. For a two-dimensional setup, the maximum growthrate

corresponds to the dominant wavelength. This dominant wavelength and the corre-

sponding growthrate are a function of parameters such as the viscosity contrast, the

relative thicknesses of upper and lower layers, and the surface and bottom boundary

conditions (e.g. no-slip or stress-free). Expressions for the 2D dominant growthrate as

a function of wavelength are given in the Appendix for various boundary conditions,

arbitrary viscosity contrasts and layer thicknesses.

Plots of the growthrate as a function of non-dimensional wavelength for different

surface boundary conditions, different viscosity contrasts and different relative layer

thicknesses are shown in figure 7.3. In general, a no-stress (or fast-erosion) upper

boundary condition results in a faster growth of the instability, than in cases with

free-slip or no-slip boundary conditions. Moreover, the no-stress case has a wider

range of dominant wavelengths. Good agreement exists between numerically computed

growthrates and the rates predicted by the linear stability theory (fig. 7.3).
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Figure 7.3: Growthrate q versus wavelength λ for a no-slip lower boundary condition and
fast-erosion, free-slip and no-slip upper boundary condition. Analytical results are shown as
well as numerical verification with a finite-difference/spectral method (GANGO) and with a
finite element code (SloMo). Dashed lines indicate dominant wavelengths and growthrates
for various thickness ratios at constant viscosity ratio 100. Dotted line indicates the domi-
nant wavelengths and growthrates for various viscosities for constant thickness ratio=0.25.
Results with a no-stress upper boundary condition are identical to the ones with fast ero-
sion. Numerical computations are performed with an initial amplitude of the perturbations
of 10−6H.
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7.3.2 Initial random perturbations

The linear stability theory is only valid for initially infinitesimally small perturbations.

Nonlinear effects may play a role during evolved stages, which significantly complicates

the mathematical analysis. Therefore, numerical methods are employed to study the

mature stages of the RT-instability. A series of numerical experiments have been

performed starting from an initially horizontal interface perturbed with random noise.

The lower boundary has a no-slip condition whereas the upper boundary has been

varied with no-slip, free-slip, fast-erosion and free surface conditions. In each case, the

same initial random noise has been imposed. The linear stability theory predicts diapirs

to form with a characteristic spacing, which is in agreement with numerical results (fig.

7.4). The free-slip and the no-slip simulations produce similar spacing although the

instabilities grow slightly faster in the free-slip case. The fast erosion-case develops

a larger spacing than the free-slip and no-slip cases. Moreover, erosion considerably

speeds up the formation of the RT-instability (by almost a factor two). The free-

surface case initially behaves like the fast-erosion case, i.e. with similar spacing, but

ultimately slows down when the upper boundary influences the raising instabilities.

Specially noteworthy is the late-stage geometry in the case of a fast-erosion upper

boundary, which is chimney-like rather then mushroom-like.

Further insight in the development of the diapirs, as well as on the applicability of

linear stability analysis during evolved stages, can be obtained by analyzing the inter-

facial perturbations with a Fourier transformation [see also Schmeling, 1987]. Such an

analysis reveals that wavelengths close to the dominant wavelength do amplify faster

then other wavelengths (fig. 7.5), in agreement with linear stability theory. Ultimately,

however, all simulations slow down and grow sub-exponentially. Note that the absolute

dominant wavelength (= 2.95) in the case of a fast-erosion upper boundary does not

develop. This is due to the box width of 10H, which allows only an integer number

of diapirs to develop (either three or four for the given setup). Non-dominant initial

perturbations exhibit periods of over-exponential growth probably caused by interfer-

ence [Schmeling, 1987], but owing to their small amplitude, they do not significantly

influence the late-stage geometry and the spacing.

The 2-D simulations reiterate the importance of erosion during the formation and

growth of diapirs [see also e.g. Poliakov et al., 1993a, Podladchikov et al., 1993]. It is
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fast erosion

free surface

free slip

no slip

Figure 7.4: Geometries that develop from an initially horizontal interface at height 0.2,
which has been perturbed with random noise of maximum amplitude 10−2. A no-slip lower
boundary condition is employed; the upper boundary condition has been varied. The viscosity
contrast between upper and lower layer is 100 and the density difference 1. The same initial
random noise distribution has been used in all simulations. Black lines represent initially
horizontal passive markerlines.

important to know which of the above-mentioned boundary conditions is most appli-

cable to natural salt systems. Since the Earth’s surface is free and simulations with a

free-slip or no-slip have significantly different dynamics, we argue that both the free-

surface and the fast-erosion conditions are applicable. Seismic records and borehole

information [Davison et al., 2000b] give evidence that buoyant doming of salt creates

sufficient topographic relief to allow downslope sliding of unlithified sediments and

lithified chalk slabs. The topographic relief above these domes through most of their

history is tens to hundreds of meters [Davison et al., 2000b], which creates a negative

force of Ftopo = (ρwat − ρsed)gAtopo, where ρwat denotes water density, ρsed sediment

density and Atopo the topographic relief. Simultaneously, the salt diapir has a posi-

tive buoyancy force: Fsalt = (ρsed − ρsalt)gAsalt, where Asalt is the amplitude of the

salt dome. The approximation of infinitely fast erosion is justified if |Ftopo| ¿ |Fsalt|.
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Figure 7.5: Time evolution of three selected Fourier coefficients of the interface for the
free-slip and the fast-erosion simulations of Fig. 7.4. Numbers 1 and 2 refer to the amplitude
of the two most pronounced wavelengths at t ≈ 5000. Number 3 refers to the second most-
pronounced wavelength at t = 0 (by chance the most pronounced wavelength at t = 0 is
number 1). Dashed (straight) lines are the time-amplitude evolution as predicted by the linear
stability theory. The inset shows the growthrate versus wavelength predicted by the linear
stability theory, together with wavelengths 1-3. Wavelengths with the largest growthrate
during the linear stage dominate the flow.

Taking ρsed = 2650 kgm−3, ρsalt = 2250 kgm−3, ρwat = 1000 kgm−3, Atopo = 10 − 200

m, Asalt = 3000− 8000 m, allows estimating |Ftopo/Fsalt| = 0.004− 0.2. Thus the fast

erosion boundary condition, with |Ftopo/Fsalt| = 0, is a reasonable end-member model

for many natural cases.

7.3.3 Initial step-like perturbation

If the interface has a strong initial perturbation, this perturbation may dominate during

the later stages. Schmeling [1987] showed in 2D and Kaus and Podladchikov [2001]

in 3D that 2D sinusoidal perturbations (for example caused by buckling) may survive

during later stages if their growthrate and amplitude is sufficiently large compared to
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the dominant growthrate. This is expressed by [Kaus and Podladchikov, 2001]:

qinitial

qdom

>
ln

(
A2D

init/(1−Hi)
)

ln (A0
dom/(1−Hi))

(7.4)

where it has been assumed that linear stability theory is valid throughout, A0
dom is

the initial amplitude of the dominant wavelength (’hidden’ in background noise), qdom

the dominant growthrate for the given setup and qinitial the growthrate of the initial

non-dominant perturbation.

Eq. (7.4) is no longer valid if the initial perturbation is step-like. This is because

a step-like perturbation (for example caused by brittle faulting of the overburden)

behaves like ’red noise’; in other words: the whole Fourier-spectra is present rather

than only one wavelength. Wavelengths close to the dominant wavelength will thus

be selected and dominate the late-stage geometry. Numerical simulations (fig. 7.6)

demonstrate that geometries with a dominant wavelength form preferentially close to

the initial step, even if the amplitude of this step is comparable to the amplitude of

the background noise. In addition, there is an over-exponential growth stronger than

for simulations without a step-like initial perturbation.

7.4 3D simulations

The 2D case-studies give insight in the nature of the Rayleigh-Taylor instability. This

instability is however inherently 3D, and a detailed understanding of the similarities

and differences between 2D and 3D cases is essential, especially when applying the

model to case studies. Results of 3D numerical simulations and stability analysis are

now presented.

7.4.1 Linear and nonlinear stability

Linear stability analysis in 3D is derivable from the results of the 2D analysis [Biot,

1966, see also appendix]. Perturbations on the interface of the form Γ(x, y) = Hi +

A0cos(2πx/λx)cos(2πy/λy) have a growthrate depending on both λx and λy. Different

than in the 2D case, where only a single dominant wavelength exist, linear stability

analysis shows that the 3D case exhibits an infinite number of dominant modes. These

modes range from 2D (λx = ∞ or λy = ∞) to purely 3D (λx = λy).
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Figure 7.6: Effect of an initial step-like perturbation on late-stage geometry. The initial
interface is perturbed with the same noise distribution as on Fig. 7.4, but additionally a
step-like perturbation of variable width and height is added. D) Time-evolution of three
Fourier components and maximum amplitude of the simulation shown in A. The fact that
the amplitude of the initial step is larger than the maximum amplitude (red curve at t = 0),
is an artefact of Fourier-analysis of step-like perturbations.

A nonlinear stability analysis by Ribe [1998], however, shows that purely 3D modes

(in the form of squares or hexagons) grow slightly faster then 2D modes, the difference

increasing with increasing amplitude. This analysis has been confirmed numerically

for equal layer thicknesses and no-slip boundary conditions [Kaus and Podladchikov,

2001]. Results for different boundary conditions and unequal layer thicknesses are

shown on figure 7.7. 3D modes grow slightly faster for finite amplitude perturbations.

Also noteworthy is a shift in the absolute dominant growthrate for initial perturbation

amplitudes which are large compared to the initial layer thickness.

A more detailed comparison of the time-evolution of 2D rolls and 3D perturbations

is given in fig. 7.9. In all cases, 3D modes amplify faster than 2D modes. Good

agreement exists between the linear stability theory and numerical results for initial

layer thicknesses larger than 0.3. For thinner layers, however, the linear stability theory

overestimates the amplitude growth versus time. This is related to the fact that a

transition from exponential- to buoyancy-controlled growth occurs, which is studied

in more details in chapter 6. The difference between 2D and 3D modes is now very

pronounced.
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Figure 7.7: Numerically computed growthrates for different sinusoidal perturbations of the
form z/H = Hi + A0cos (2π/λxx) cos (2π/λyy), where A0 and the upper boundary condition
have been varied (other parameters are: µ2/µ1 = 1, Hi = 0.2, ∆ρ = 1, no-slip lower boundary
condition). For small initial amplitudes, a large number of dominant perturbations (i.e. with
maximum growthrate) exist. At larger initial amplitudes, purely 3D modes (λx = λy) amplify
slightly faster than 2D modes. The preference for 3D modes is more pronounced in cases with
a free-slip upper boundary condition. Also note the absolute shift in dominant wavelength at
larger initial amplitudes, which is due to the fast that the two layers are initially of unequal
thickness.

The fact that in 3D a large number of dominant modes amplify with almost identical

rates may result in complex patterns, due to the superposition of different modes (see

fig. 7.9). A regular spacing of 3D domes will only occur if purely 3D modes amplify

significantly faster then 2D modes, which is generally not the case for finite layer

thicknesses.

7.4.2 Initial random noise

The 3D geometries that evolve from an initial horizontal interface with random noise,

for different initial layer thicknesses and upper boundary conditions (fast erosion and
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Figure 7.8: A) Normalized maximum amplitude versus time for 2D and 3D structures
with different initial layer-thicknesses and a fast-erosion upper boundary condition. The
upper line is for 3D, the lower for 2D structures (which grow slightly slower). Dashed line
represents the amplitude behavior predicted by linear theory. B) Normalized amplitude versus
normalized time during initial stages. All instabilities grow super-exponentially (dashed
line represents the exponential solution). The thinner the layer, the more pronounced the
preference for 3D structures. λ3D = λx = λy = 1.73, λ2D = 1.22, qmax = 0.03 if Hi = 0.3H;
λ3D = 1.05, λ2D = 0.74, qmax = 0.019 if Hi = 0.2H; λ3D = 0.52, λ2D = 0.37, qmax = 0.01 if
Hi = 0.1H.

free slip), are illustrated in figure 7.10. Simulations with a free-slip upper boundary

ultimately form mushroom-shaped structures, whereas a fast-erosion boundary con-

dition leads to chimney-like structures. The patterns that evolve from a thin initial

layer are identical for both boundary conditions, which is related to the fact that the

dominant growthrate and wavelength are nearly identical for the two cases (since they

are dominated by the no-slip lower boundary condition). If the initial layer is thicker,

the dominant wavelength and spacing are different for the two cases.

Simulations with a fast erosion boundary condition and random initial perturba-

tions for different initial layer thicknesses are shown in figure 7.11. The resulting

structures are not perfectly circular in mapview. They vary in size and may even form

elongated and curved shapes, especially for thicker initial layer thicknesses. Spokes

occur between the different domes. A Fourier analysis of the interfacial perturbations

(fig. 7.12) reveals that the largest 10 Fourier components are all close to the dominant
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BA 1 2

43

Figure 7.9: Illustration of the interference of different 3-D dominant wavelengths (A),
which results in an -at first sight- fairly complex pattern (B). The following equations
have been used to compute the four structures in A): 1: z = sin

(
2π

0.71x
)
cos

(
2π
2.5y

)
2:

z = cos
(

2π
0.83x

)
cos

(
2π

1.67y
)

3: z = sin
(

2π
5 x

)
sin

(
2π

0.83y
)

4: z = sin
(

2π
0.83x

)
cos

(
2π
2.5y

)
, with

x, y, z in nondimensional form. The structure in B) is obtained by adding A1-4. The inset in
A) shows the growthrate for a fast-erosion upper boundary condition and an interface height
of 0.2H. All structures in A) are close to the dominant wavelength.

modes. Thus, the range of patterns that can be observed is due to the superposition

of different dominant modes. The analysis also reveals that all modes grow with a

nearly constant rate, as predicted by the linear stability rate. It should be noted that

a Fourier analysis is only possible until the overhangs begin to form. The amplitude

evolution during later stages may be controlled by a buoyancy-controlled velocity and

may be slower than that predicted by linear stability analysis.
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Figure 7.12: Amplitude versus time of selected Fourier components for the simulations
of Fig. 7.11. with Hi = 0.2H and Hi = 0.1H. The plotted components have maximum
amplitude at the time when overhangs form (t ≈ 250). Inset shows the growthrate versus
wavelength together with 10 Fourier components of maximum amplitude at t ≈ 250. All
Fourier components are close to the dominant wavelength; the simulation with Hi = 0.1H
has slightly more preference for 3D structures.

7.4.3 Initial step-like perturbations

If a step-like perturbation with amplitude larger than the amplitude of background

noise affects the initial interface, linear wall-like structures develop during later stages

(fig. 7.13). If the step amplitude has the same order of magnitude than the amplitude of

background noise, aligned domes result; if the step-offset is smaller than the background

noise, 3D chimney-like diapirs are produced. Fourier analysis of the amplitude versus

time reveals that 2D modes grow sub-exponentially in case the 2D mode does not

survive during later stages, whereas they grow slightly super-exponential otherwise

(fig. 7.14).

7.5 Discussion

Before discussing the relevance of the results to salt diapirism, it is useful to review

the different opinions on salt tectonics.

Jackson [1995], divided the research on salt tectonics in three eras: (1) the pi-

oneering era (1856-1933), (2) the fluid era (1933− ∼ 1989) and (3) the brittle era
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Figure 7.14: Amplitude versus time of selected Fourier components for the simulations of
Fig. 7.13. with Astep = 10−3 and Astep = 10−2 and a width of 3. If Astep = 10−2, 2-D
perturbations dominate the late-stage flow.

(1989-now). During the pioneering era, salt structures were recognized and different

formation mechanisms were discussed. The fluid era started with the laboratory ex-

periments of Nettleton [1934] explaining the formation of salt diapirs with a Rayleigh-

Taylor (RT) instability. One argument in favor of this mechanism is the fact that the

salt density is nearly pressure-independent whereas the density of overlying sediments

increases with depth. Thus, once the overburden reaches a certain thickness, its mean

density becomes larger then the density of salt, and if both salt and overburden behave

effectively like viscous fluids over geological times, a RT-instability is an appropriate

model. Many salt diapirs display regular spacing in map view over large areas (e.g.

fig. 7.2B), which is in agreement with the RT model and has been used to estimate the

effective viscosity of the overburden (∼ 1020 − 1023 Pas, [e.g. Rönnlund, 1989]. But do

sediments actually behave like viscous fluids? The frequent occurrence of brittle faults

in sedimentary basins suggests that sediments behave brittle rather than ductile in the

upper crust. At the same time, laboratory experiments indicate that pressure solution

is an important, creep-like deformation mechanism in sedimentary rocks. Analogue

experiments of a ductile layer (usually silicone), overlain by a brittle layer (typically

represented by cohesionless sand) demonstrated that one may simulate salt structures

if extension is applied [e.g. Vendeville and Jackson, 1992]. This marked the onset of
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the brittle era of salt tectonics. One of the main arguments in favor of brittle salt

tectonics is the fact that salt seems to be mainly mobilized during periods of regional

compression or extension [Jackson, 1995].

However, many other factors have been shown to contribute to salt diapirism, in-

cluding sedimentation, erosion, and differential loading. The idea that salt-tectonics

is due to brittle deformation of the overburden has recently been challenged by a

number of field observations, borehole information, seismics and numerical studies. A

detailed study of salt diapirs in the Central North-Sea Basin showed that most of the

diapirs have been formed by down-building (sedimentation), and little brittle defor-

mation was observed above the domes. Salt diapirs in the Dniepr-Donets Basin were

shown to be initiated during periods of rifting, but continued to rise long after rifting

had ceased [Stovba and Stephenson, 2003]. Overburden deformation is predominantly

ductile above salt layers. There is a strong correlation between basement faults and

salt structures, but the regular spacing of the structures cannot be explained by the

spacing of these basement faults.

Thus, the evidence for both brittle and ductile behaviors is not unambiguous. Per-

haps the best way to model the sedimentary overburden is allowing the sediments

to behave ductile and brittle, depending on the ambient conditions (e.g. strainrate,

temperature). Such a rheological model (visco-elasto-plastic) accounts for the finite

strength of rocks and is applicable to models of lithospheric-scale [Burg and Podlad-

chikov, 1999, Gerbault, 2000, Burov et al., 2003], and crustal-scale [Poliakov et al.,

1996, Lavier et al., 2000, Lavier and Buck, 2002] deformation. Modelling results of

fault patterns in a brittle layer above a ductile layer in extension are in excellent agree-

ment with laboratory experiments that use clay as analogue brittle material [Bellahsen

et al., 2003].

A similar rheology has been employed in numerical models designed to study the

interaction between a brittle overburden and a viscous salt layer [Poliakov et al., 1996].

Results showed that the location of salt-diapirs is governed by brittle faults in com-

pression or in extension [Poliakov et al., 1993a]. If large-scale tectonic deformation is

absent, the effects of buoyancy are sufficient to deform the overburden and to create

salt diapirs [Poliakov et al., 1996], especially if sedimentation and erosion are taken into

account. Physically, these observations can be explained if the dominating deformation

mode depends on the stress state of the overburden. Brittle faulting will only occur if
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the differential stress exceeds the yield criteria given by Byerlees law. If the overburden

has a visco-elastic rheology, the maximum differential stress is proportional to strain-

rate. During periods of extension, this differential stress will exceed the strength of

rocks and lead to faulting. However, the differential stress due to buoyancy is propor-

tional to A∆ρg (with A the amplitude of the dome, ∆ρ the density difference between

salt and overburden and g the gravitational acceleration), which is on the order of a

few MPa for natural parameters [Poliakov et al., 1996]. Such a stress will only exceed

the yield criteria close to the surface, which means that the governing mode during

the initial stages of salt-diapir formation (when A is small) is dominated by ductile (or

pressure-solution) creep rather then by brittle faulting [Poliakov et al., 1996].

Our 3D results employing a viscous overburden show that the linear, wall-like salt

structures observed in many sedimentary basins (e.g. fig. 7.2A) are unlikely to have

formed spontaneously unless a strong initial 2D perturbation was present. Such a

perturbation could be caused by brittle faulting of the overburden, that offsets the salt-

overburden interface. The frequently observed three-dimensional patterns, however, are

in agreement with a RT model [see e.g. Rönnlund, 1989, Hughes and Davison, 1993].

The fact that not all domes are perfectly circular or of equal size and shape cannot

be used as an argument to reject the RT model as a cause for the pattern formation.

Yet, more work is required to understand the mechanics of the interaction of a brittle

(visco-elasto-plastic) overburden with a viscous substratum, especially in 3D.

7.6 Conclusions

The viscous RT instability has been studied for a no-slip lower boundary condition and

for no-slip, free-slip, free surface and fast redistribution upper boundary conditions both

in 2D and 3D cases. Emphasis has been put on the differences between previous 2D

modelling and the 3D results. The following conclusions are reached:

1. Erosion and deposition have a profound effect on the final geometry of diapiric

structures. Rather then mushroom-shaped they become chimney-like.

2. Whereas only a single dominant wavelength exist in the 2D Newtonian viscous

case, an infinite number of dominant modes exist in the 3D case.

3. The spacing of diapirs both in 2D and 3D cases closely follows the predictions of

linear stability theory if they grow from an initial horizontal interface perturbed with
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random noise.

4. The superposition of different 3D dominant modes results in complex patterns

with diapirs of different thicknesses, having a variety of shapes, from finger-like (circular

or elliptical in mapview) to curved elongated.

5. Wall-like diapirs may be initiated by a strong sinusoidal or step-like initial

perturbation of the interface between low and high density fluids. Thus, salt-walls can

only be explained by a RT-type model if they are initiated by a strong initial linear

perturbation, for example caused by brittle faulting or folding. Simultaneously, the 3D

salt-dome patterns observed in many basins seem to be in good agreement with a RT

model.

This work has some limitation. Firstly the effects of sedimentation and strongly

varying overburden thicknesses are not taken into account. Secondly the overburden is

assumed to be viscous. Although this may be relevant for several cases, more analytical

and numerical work is required to better understand the mechanics of a brittle over-

burden superposed on a ductile substratum. This is a challenging problem, especially

in 3D.
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7.8 Appendix

The linear stability analysis for the 2D Rayleigh-Taylor instability can be derived

by means of a perturbation method. Both the technique and some results are rela-

tively well documented and will therefore not be repeated here [see for example Chan-

drasekhar, 1961, Biot and Odé, 1965, Turcotte and Schubert, 1982, Fletcher, 1972,

Canright and Morris, 1993, Ribe, 1998, Conrad and Molnar, 1997, Burg et al., 2004,

for more details]. The resulting expressions, however, are in the most general case

(variable thickness, viscosity ratio etcetera) rather lengthy. In order to make the re-

sults available for a wider audience, we have chosen to present the solutions in the form

of a MAPLE script (fig. 7.15). The expressions have been used to verify two indepen-

dently developed numerical codes (fig. 7.3). Three different boundary conditions are
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considered. A no-slip condition:

vz = 0, vx = 0 (7.5)

A free-slip condition:

vz = 0, σxz = 0 (7.6)

and a fast-erosion (horizontal no-stress) condition:

σzz = 0, σxz = 0 (7.7)

The growthrate q is non-dimensionalized by Hg∆ρ/µ1. Thus the amplitude behavior

versus time for ’real parameters’ is given by A(t) = A0exp(qHg∆ρt/µ1), with t in

seconds and A in meters. The 2D solution can be transformed into the 3D solution

after noticing that [Biot, 1966]

(
2π

λ2D

)2

=

(
2π

λx

)2

+

(
2π

λy

)2

(7.8)
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> #RT instability without compression for a linearly viscous rheology

> restart;

> # assume velocity to be periodic:

> Vx := -1/omega*vx(z)*sin(omega*x):

> Vz := vz(z)*cos(omega*x):

> P := p(z) *cos(omega*x):

> # Rheology:

> Sxx := -P + 2*mu*diff(Vx,x):

> Szz := -P + 2*mu*diff(Vz,z):

> Sxz := mu*(diff(Vx,z)+diff(Vz,x)):

> # Equilibrium equations:

> eq1 := diff(Vx,x)+diff(Vz,z)=0:

> eq2 := diff(Sxx,x)+diff(Sxz,z)=0:

> eq3 := diff(Sxz,x)+diff(Szz,z)=0:

> # Use incompressibility equation to find expression for vx(z):

> vx(z):=solve(eq1,vx(z)):

> # Eliminate pressure from force-balance equations

> eq := simplify(diff(eq2,z)-diff(eq3,x)):

> # Solve the equation

> sol:=dsolve(eq,vz(z)):

> vz(z) := _C1*exp(-omega*z)+_C2*exp(-omega*z)*z+_C3*exp(omega*z)+_C4*exp(omega*z)*z:

> # Compute velocities and stresses from given solution for vz(z):

> vx(z) := eval(vx(z)): p(z) := solve(eq2,p(z)):

> Sxx := eval(Sxx): Sxz := eval(Sxz):

> Szz := eval(Szz): P := eval(P):

> Vx := eval(Vx): Vz := eval(Vz):

> # Our system has two layers: upper and lower.

> # Set viscosity of lower layer to 1.

> # Spell out velocities and stresses in every layer

> sbs := {_C1=C[1],_C2=C[2],_C3=C[3],_C4=C[4],mu=R}:

> Vz_up := subs(sbs,Vz): Vx_up := subs(sbs,Vx): Sxx_up := subs(sbs,Sxx):

> Sxz_up := subs(sbs,Sxz): Szz_up := subs(sbs,Szz):

> sbs := {_C1=C[5],_C2=C[6],_C3=C[7],_C4=C[8],mu=1}:

> Vz_lo := subs(sbs,Vz): Vx_lo := subs(sbs,Vx): Sxx_lo := subs(sbs,Sxx):

> Sxz_lo := subs(sbs,Sxz): Szz_lo := subs(sbs,Szz):

> # Set boundary conditions at top of domain

> # In case of fast erosion:

> eq[1] := subs(z=1,Sxz_up) = 0:

> eq[2] := subs(z=1,Szz_up) = 0:

> # In case of no-slip

> #eq[1] := subs(z=1,Vz_up) = 0:

> #eq[2] := subs(z=1,Vx_up) = 0:

> # In case of free-slip

> #eq[1] := subs(z=1,Vz_up) = 0:

> #eq[2] := subs(z=1,Sxz_up) = 0:

> # Matching conditions at the interface

> eq[3] := subs(z=Hi,Vz_up - Vz_lo ) = 0:

> eq[4] := subs(z=Hi,Vx_up - Vx_lo ) = 0:

> eq[5] := subs(z=Hi,Sxz_up - Sxz_lo) = 0:

> eq[6] := subs(z=Hi,Szz_up - Szz_lo + 1*Vz_up/q) = 0:

> # Lower boundary (no slip)

> eq[7] := subs(z=0,Vx_lo) = 0:

> eq[8] := subs(z=0,Vz_lo) = 0:

> # Only keep coefficients

> eq[1]:=simplify(eq[1]/sin(omega*x)): eq[2]:=simplify(eq[2]/cos(omega*x)):

> eq[3]:=simplify(eq[3]/cos(omega*x)): eq[4]:=simplify(eq[4]/sin(omega*x)):

> eq[5]:=simplify(eq[5]/sin(omega*x)): eq[6]:=simplify(eq[6]/cos(omega*x)):

> eq[7]:=simplify(eq[7]/sin(omega*x)): eq[8]:=simplify(eq[8]/cos(omega*x)):

> # collect coeffecients in matrix form. Note that we now have q in the equations (the growthrate)

> # The problem now is: A*C=RHS, and since RHS=0, the only solution occurs if det(A)=0.

> # Thus the growthrate can be calculated by assuming that the determinant of A=0

> N := 8:

> A := matrix(N,N,[]):

> RHS := vector(N,0):

> for i from 1 to N do

> RHS[i] := eval(lhs(eq[i])):

> for j from 1 to N do

> A[i,j] := simplify(coeff(eval(lhs(eq[i])),C[j]));

> RHS[i] := simplify(RHS[i] - A[i,j]*C[j]):

> od:

> od:

> with(linalg):

> #Calculate determinant of the matrix A:

> det_A:=det(A):

> # Compute growthrate:

> q_num:=solve(det_A,q):

> #Plot the solution:

> plot([subs({omega=2*Pi/lambda,Hi=.25,H=1,R=1e2}, q_num),

> subs({omega=2*Pi/lambda,Hi=.20,H=1,R=1e2}, q_num),

> subs({omega=2*Pi/lambda,Hi=.25,H=1,R=1e3}, q_num)],lambda=.2..10);

Figure 7.15: MAPLE (version 8.0) script to compute the growthrate as a function of wave-
length and material parameters for the 2D Rayleigh-Taylor instability for various boundary
conditions.
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Chapter 8

A finite difference/spectral method
for large deformation modelling of
visco-elasto-plastic geomaterials1

Abstract

Many problems that occur in geodynamics can be reduced to the solving of visco-

elasto-plastic rheological equations. Here we describe a spectral/finite-difference method

that can deal with a Maxwell viscoelastic rheology combined with Mohr-Coulomb plas-

ticity in an Eulerian framework. The method approximates derivatives in vertical direc-

tion by finite-differences and in horizontal direction(s) by a pseudospectral approach.

Material boundaries are tracked by marker chains that are moved through a fixed grid

and allow large deformations. Lateral viscosity variations are treated by either a direct

solver or by an iterative method. Advection of smoothly varying properties is done

with a semi-Lagrangian advection scheme. Performance issues of the iterative versus

the direct scheme are discussed and benchmark results are presented for a range of

different problems.

1Part of this work has been published in: Kaus, B.J.P, Podladchikov, Y.Y., Schmid, D.W. (2004)
Eulerian spectral/finite difference method for large deformation modelling of visco-elasto-plastic ge-
omaterials. Extended abstracts of the GeoMod2004 conference. Bolletino di Geofisica. Vol. 45.
p346-349.)
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8.1 Introduction

One of the goals of geoscientists is to understand the physical processes that

formed and reworked the earth. This is a difficult problem since the current state of

earth is a result of billions of years of accumulated deformation and insight in the main

driving mechanisms is at least indirect or approximate. In recent years numerical mod-

elling has been proven useful on the matter. Much of our understanding about mantle

convection, for example, comes from numerical simulations that treat the mantle as a

creeping, highly viscous fluid. The lithospheric plates, on the other hand, are colder

than the mantle and behave more like a viscoelastic, brittle solid. Numerical modelling

of the deformation of these plates and their coupling to the mantle thus requires the

solving of visco-elasto-plastic rheological equations. In addition, it is important that

a numerical method developed for this purpose, is efficient, can handle large defor-

mations, strong variations of material properties, free surface effects and non-linear

rheologies. Previous workers utilized finite element methods [Huismans et al., 2001],

dynamic Lagrangian remeshing methods [Braun and Sambridge, 1994], particle-in-cell

finite element techniques [Moresi et al., 2003] and control-volume methods [Poliakov

et al., 1993, 1996] to deal with the problems described above.

We follow a different approach and solve the governing equations by an Eulerian finite-

difference/spectral method [Schmalholz et al., 2001]. Our method differs from the

method of Schmalholz et al. [2001] since we (1) employ a different discretization tech-

nique, (2) have a different advection scheme, (3) solve for a visco-elasto-plastic rheology

rather then for a viscoelastic rheology, (4) modified the iterative scheme, and (5) couple

the energy equation to the mechanical equations. In the following parts of this chapter,

details are given about the mathematical and numerical aspects of the code and several

benchmark tests are presented.

8.2 Mathematical model

For many geodynamic applications involving slow deformation inertial effects are not

important and the balance equations can be written as:

∂ρvi

∂xi

+
∂ρ

∂t
= 0
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∂σij

∂xj

= ρgi (8.1)

here vi is velocity, σij stress, ρ density, g gravitational acceleration and t is time.

A Maxwell viscoelastic rheology for stress- and strain rate deviators is assumed [e.g.

Schmalholz et al., 2001]:

˜̇ε
ve

ij = ˜̇ε
v

ij + ˜̇ε
e

ij =
1

2µvis

τij +
1

2G

Dτij

Dt
(8.2)

where τij = σij + δijP , ˜̇εij = ε̇ij − ¯̇ε, ε̇ij = 1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
, P = −1

3
tr (σij), ¯̇ε = 1

3
tr (ε̇ij),

G is the elastic shear modulus, µvis the shear viscosity (which may have a nonlinear

stress- and temperature-dependence) and D
Dt

denotes the objective derivative of the

stress tensor.

Rocks cannot sustain high stresses; instead they will fail plastically. Since in this case

elastic strains are small, it is adequate to make the additive strain rate decomposition,

which states that:

ε̇ij = ε̇ve
ij + ε̇p

ij (8.3)

where ε̇ve
ij and ε̇p

ij denote viscoelastic and plastic strain rates respectively. The plastic

strain rate can be calculated according to:

ε̇p
ij = λ̇

∂Q

∂σij

(8.4)

where ∂Q
∂σij

is the direction of plastic flow and λ̇ the plastic multiplier. The yield criterion

can be expressed in Kuhn-Tucker form as [Simo and Hughes, 2000]

λ̇ ≥ 0, F ≤ 0, λ̇F = 0 (8.5)

For rocks under upper-crustal conditions, a Mohr-Coulomb yield function with non-

associated flow rule is the minimum model. Spelled out for a 2D case, it can be written

as [Vermeer and de Borst, 1984]:

F = τ ∗ − σ∗ sin (φ)− c cos (φ)

Q = τ ∗ − σ∗ sin (ψ) (8.6)

where φ is the friction angle, ψ the dilation angle (in general smaller than φ), c the

cohesion of the rocks, τ ∗ is the radius and σ∗ the center of the Mohr-circle, given by

τ ∗ =

√(
σxx − σzz

2

)2

+ σ2
xz
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σ∗ = −σxx + σzz

2
(8.7)

Substituting eqs. (8.3) and (8.4) into eq. (8.2), we obtain the rheological equation

for a visco-elasto-plastic material:

ε̇ij − ε̇p
ij − ¯̇ε

ve
= ˜̇ε

ve

ij =
1

2µvis

(σij + P ) +
1

2G

D (σij + P )

Dt
(8.8)

In addition, we also solve the energy equation, given by

ρcp

(
∂T

∂t
+ vi

∂T

∂xj

)
=

∂

∂xj

(
k

∂T

∂xj

)
+ H + τij

(
ε̇ij − ε̇el

ij

)
(8.9)

where cp is the heat capacity, k the thermal conductivity, H radioactive heat production

and the last term denotes shear-heating due to dissipative, non-recoverable processes.

We have ignored adiabatic heating, which should however taken into account in mod-

els of mantle convection with the extended Bousinesq approximation. Currently, the

numerical code is written for an incompressible rheology, thus ∂ρ/∂t = 0 in eq. (8.1).

8.3 Numerical method

8.3.1 Discretization

The system of equations, eqs. (8.1), (8.8), and eq. (8.9) are discretized using a finite-

difference/spectral approach. Differently to conventional approach leading to a 4th-

order ordinary differential equation [e.g. Schmalholz et al., 2001], our formulation re-

sults in two 2nd-order equations for two unknown functions. The balance equations are

always satisfied analytically by choosing σzz and vz as the primitive unknown functions.

Moreover, the formulation makes the implementation of stress boundary-conditions

straightforward. Variables are approximated by a Fourier series in the horizontal di-

rection and by a finite-difference scheme in the vertical direction. Examples of Fourier

expansions are [see e.g. Trefethen, 2001] :

vz(x, z) =

nk/2∑

k=−nk/2

v̂k
z (z)e(iωx) (8.10)

vx(x, z) =

nk/2∑

k=−nk/2

v̂k
x(z)e(iωx) (8.11)
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σzz(x, z) =

nk/2∑

k=−nk/2

σ̂k
zz(z)e(iωx) (8.12)

µ(x, z) =
nk∑

l=−nk

µ̂l(z)e(iωlx) (8.13)

T (x, z) =

nm/2∑

m=−nm/2

T̂m(z)e(iωmx) (8.14)

where i =
√−1, ω = 2πk/L, ωl = 2πl/L, ωm = 2πm/L are wavenumbers and L is

the length of the domain under consideration. Note that the length of the viscosity

expansion is twice the length of the stress and velocity expansions. Substituting the

Fourier expansions into the balance equations (eqns. (8.1)) and collecting factors in

front of the exponential term gives:

iωv̂k
x +

∂v̂k
z

∂z
= 0

iωσ̂k
xx +

∂σ̂k
xz

∂z
= 0

iωσ̂k
xz +

∂σ̂k
zz

∂z
= ρ̂kg (8.15)

From these equations, analytical expressions for σ̂xx and σ̂xz as a function of σ̂zz can

be written (for ω ≡ ωm ≡ ωl 6= 0):

σ̂k
xz = − 1

iω

(
∂σ̂k

zz

∂z
− ρ̂kg

)

σ̂k
xx = − 1

iω

(
∂σ̂k

xz

∂z

)
=

1

iω

(
∂

∂z

(
1

iω

(
∂σ̂k

zz

∂z
− ρ̂kg

)))
(8.16)

The same applies for v̂x and v̂z:

v̂k
x = − 1

iω

(
∂v̂k

z

∂z

)
(8.17)

The rheological equation (8.8) involves the time derivative of the stress tensor. This

objective derivative is discretized, e.g.

Dτxx

Dt
=

τxx − τ old
xx

dt
+

∇
τ

old

xx (8.18)

∇
τ

old

xx =

(
vx

∂τxx

∂x
+ vz

∂τxx

∂z

)

︸ ︷︷ ︸
advection

+
(
τ old
xx cos2(θ) + τ old

zz sin2(θ)− τ old
xz sin(2θ)

)
︸ ︷︷ ︸

rotation

(8.19)
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Numerically, the advective terms are solved by a semi-Lagrangian advection scheme,

with a second order Runga-Kutta algorithm for backwards tracing [Malevsky and Yuen,

1991]. The rotational terms denote the rotation by an angle θ, computed from the

vorticity:

θ = −1

2

(
∂vx

∂z
− ∂vz

∂x

)
dt (8.20)

We employ the full rotational formula [e.g. Turcotte and Schubert, 1982], which can

be shown to simplify to the Jaumann rotation formula for θ → 0 (Appendix). Using

the definition of eq. 8.18, the rheological equation (8.8) can be spelled out as:

σxx + P = 2µeff

(
ε̇xx − ε̇pl

xx

)
+ ηeff

(
σold

xx + P old +
∇
τ

old

xx

)
(8.21)

σzz + P = 2µeff

(
ε̇zz − ε̇pl

zz

)
+ ηeff

(
σold

zz + P old +
∇
τ

old

zz

)
(8.22)

σxz = 2µeff

(
ε̇xz − ε̇pl

xz

)
+ ηeff

(
σold

xz +
∇
τ

old

xz

)
(8.23)

where

µeff =
1

1
µvis

+ 1
Gdt

(8.24)

ηeff =
1

1 + Gdt
µvis

(8.25)

Thus the effective viscosities become dependent on the timestep dt. The rheological

equations involve multiplication of Fourier series (convolution), e.g. of the form µeff
∂vx

∂x
:

µeff (x, z)
∂vx(x, z)

∂x
=

nk∑

l=−nk

µ̂l
eff (z)e(iωlx)

nk/2∑

k=−nk/2

iωv̂k
x(z)e(iωx)

=
nk∑

l=−nk

nk/2∑

k=−nk/2

iωµ̂l
eff (z)v̂k

x(z)e(i 2π
L

(k+l)x) (8.26)

if both velocity harmonics v̂k
x and viscosity harmonics µ̂l

eff are known, such a con-

volution can be performed either by evaluating equation (8.26), or by employing a

FFT-based transformation [see e.g. Trefethen, 2001]. In practice, however, only the

viscosity harmonics are known, and the velocity harmonics are to be computed. In this
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Figure 8.1: Discretization scheme employed in this work.

case, it is advantageous to write the convolution (8.26) in matrix-form, e.g.




µ̂0
eff µ̂−1

eff µ̂−2
eff µ̂−3

eff .. µ̂−nk+2
eff

µ̂1
eff µ̂0

eff µ̂−1
eff µ̂−2

eff .. :

µ̂2
eff µ̂1

eff µ̂0
eff µ̂−1

eff .. :

: .. µ̂1
eff µ̂0

eff µ̂−1
eff µ̂−2

eff

: .. µ̂2
eff µ̂1

eff µ̂0
eff µ̂−1

eff

µ̂nk−2
eff .. µ̂3

eff µ̂2
eff µ̂1

eff µ̂0
eff







iωv̂
−nk/2+1
x

:

iωv̂−1
x

iωv̂1
x

:

iωv̂
nk/2−1
x




=




R̂−nk/2+1

:

R̂−1

R̂1

:

R̂nk/2−1




(8.27)

Note that convolved harmonics with Rk≤−nk/2 and Rk≥nk/2 are dropped in order to

reduce the aliasing effect [Trefethen, 2001]. Moreover, this spectral approach only

solves for perturbations, so that the 0th harmonics are not computed.

The rheological equations can be split into a part for normal and a part for shear

stresses:
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Figure 8.2: Sparseness of solution matrix A for a problem with variable viscosity.

σ̂k
xx − σ̂k

zz = 2µ̂l
eff

((
iωv̂k

x − ˆ̇ε
p,k

xx

)
−

(
∂v̂k

z

∂z
− ˆ̇ε

p,k

zz

))
+ η̂l

eff

(
∇
σ̂

old,k

xx −
∇
σ̂

old,k

zz

)

σ̂k
xz = µ̂l

eff

(
∂v̂k

x

∂z
+ iωv̂k

z − ˆ̇ε
p,k

xz

)
+ η̂l

eff

(
∇
σ̂

old,k

xz

)
(8.28)

Substituting eq. (8.16) and (8.17) into eqns (8.28) results in two equations for the two

unknowns v̂k
z and σ̂k

zz. These equations can be discretized with a conservative finite

difference scheme on a staggered grid (see fig. 8.1). If the convolution matrix (8.27) is

used throughout, the solution of the system of equations, together with the appropriate

boundary conditions, can be written as

Af = RHS (8.29)

where A is a sparse matrix (illustrated in fig. 8.2), f is a vector composed of unknown

coefficients σ̂k
zz and v̂k

z , and RHS is a vector that can be computed from eqns. 8.28

taking as an initial guess, e.g. σzz(x, z) = vz(x, z) = 0.

The energy equation is also solved with a spectral/finite difference scheme. The

spectral resolution of temperature, however, may be larger then the resolution of the

mechanical equations, which is advantageous when performing computations with a
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temperature-dependent viscosity. Advective terms in the energy equation are solved

with a semi-Lagrangian method [Malevsky and Yuen, 1991]. The remaining (diffusive)

part of the energy equation can thus be written as:

T̂m − T̂m
old

dt
= κ

(
∂2T̂m

∂z2
− ω2T̂m

)
+ Ĥm

source (8.30)

where Ĥm
source are heat sources due to mechanical dissipation and radioactive heating,

and κ is the thermal diffusivity. This equation can be solved on a wavenumber-by-

wavenumber basis.

8.3.2 Iterative approach

If the direct method is employed, the system of equations that has to be solved scales

with the number of gridpoints in vertical direction nz and the number of Fourier har-

monics in horizontal direction nk as nk(2nz − 1). Such a system can quickly become

large, and it may be advantageous to switch to an iterative solution scheme. The

iterative scheme does not use the full bandwidth matrix (eq. 8.29), but employs a

reduced matrix instead. There are several ways to compose this matrix. Christensen

and Harder [1991] and Marquart [2001] employ as initial guess µ0
eff (mean viscosity).

Here we employ a more general method and allow the bandwidth to be varied (for

example 2,4 etc.). The algorithm is best illustrated by an example. Suppose we want

to solve eq. (8.27) by an iterative approach and assume that nk = 8. If only the mean

viscosity is employed on the left-hand-side a pseudocode gives:

1: while max(|RHS|) > tolerance do

2: RHS = RHSi −Af

3: Compute for k=-3..3 (but k 6= 0)

(
µ0

eff

) (
df−3

)
=

(
RHS−3

)
(
µ0

eff

) (
df−2

)
=

(
RHS−2

)

etc.

4: f = f + χ df

5: end while
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Figure 8.3: Performance of the code for a Rayleigh-Taylor type problem with a highly
viscous overburden for two different viscosity contrasts as a function of problem size. Note
that this example represents a ’worse-case’ scenario, since in typical model runs the instability
is initiated with a smaller initial amplitude and that thus a better initial guess exists for the
iterative solver.

where RHSi is the initial right-hand-side, and χ is a relaxation parameter (χ < 1),

required for the iterations to converge.

If a bandwidth of 2 is employed, a pseudocode is given by:

1: while max(|RHS|) > tolerance do

2: RHS = RHSi −Af

3: Compute

(
µ0

eff µ−1
eff

µ1
eff µ0

eff

)(
f−1

f1

)
=

(
RHS−1

RHS1

)

(
µ0

eff µ−2
eff

µ2
eff µ0

eff

)(
f−2

f2

)
=

(
RHS−2

RHS2

)

etc.

4: f = f + χ df

5: end while

With such an approach, we can arbitrarily vary the bandwidth and switch from a

direct solver to an iterative solver. Whether the direct solver or the iterative solver has

a better performance, is dependent on the type of problem (periodic or non-periodic),



8.3. NUMERICAL METHOD 219

the effective lateral viscosity contrast (better performance for small viscosity contrasts),

the problem size, the timestep, the ’initial guess’, the smoothness of the lateral viscosity

contrast, etc. Examples of the performance of the code are given in figure 8.3 for a

RT-type problem. Interestingly, the use of two harmonics is most efficient for large

viscosity contrasts and problem sizes.

8.3.3 Plasticity formulation

Under large differential stresses rocks may fail plastically. For upper-crustal conditions,

the maximum deviatoric stress is given by the Byerlee law, which can be described

by a Mohr-Coulomb failure criteria. Under high-stress, upper mantle conditions, a

Peierls-creep mechanism is more applicable. This mechanism can be described, as a

first approximation, by a pressure-independent Von Mises yield criteria (see Chapter

4), which can in turn be shown to be identical to a Mohr-Coulomb model with zero

friction angle (in 2D plane strain). Therefore, we have chosen to incorporate the Mohr-

Coulomb plasticity model in the current code.

Plastic yielding occurs if stresses are higher than the yield envelop (i.e. F > 0 in

equation (6)). If this is detected, stresses are pointwise returned to the yield envelop in

the direction of the plastic flow (equation 4). Plastic strain-rates for the Mohr-Coulomb

model in the two-dimensional case can be computed from (8.4) and (8.6) together with

the requirement that they are objective (independent on reference-frame):

ε̇pl
xx = λ̇

(
σxx − σzz

4τ ∗
+

1

2
sin(ψ)

)

ε̇pl
zz = λ̇

(
−σxx − σzz

4τ ∗
+

1

2
sin(ψ)

)

ε̇pl
xz = λ̇

(σxz

2τ ∗

)
(8.31)

where λ̇ is a to-be-determined scalar. From these expressions one can verify that the

incompressible case is retained only if ψ = 0 (since only then ε̇pl
xx+ε̇pl

zz = 0). The change

in deviatoric stress due to plasticity is then proportional to µeff ε̇
pl. Since in this case

pressure does not change during return mapping to the yield surface, the change in

stress is of equal magnitude as the change in deviatoric stress. A given stress state

(σtr
xx, σ

tr
zz, σ

tr
xz) which is outside the yield surface F (σtr) > 0, can be returned to the

yield surface (σy
xx, σ

y
zz, σ

y
xz) with a plastic stress increment (∆σpl

xx, ∆σpl
zz, ∆σpl

xz). These



220 CHAPTER 8. NUMERICAL METHOD

r

sxz

(s )xx /2-szz

non-plasticplastic

yield envelop

trial stress state
outside yield envelop

stress after
plastic correction

Figure 8.4: Mohr-Coulomb return mapping. The yield envelop for a Mohr-Coulomb mate-
rial plotted in σxz − (σxx − σzz)/2 space is a circle with radius r = −sin(φ)(σxx + σzz)/2 +
Ccos(φ). A given stress (σtr

xx, σtr
zz, σ

tr
xz) that is outside the yield envelop, should be returned

to the yield envelop (σy
xx, σy

zz, σ
y
xz). The plastic flow direction points towards the center of the

circle, and the correct stress state is thus the crossing point between the circle and the radial
line. If the dilation angle is zero, the circle radius stays constant during return mapping. In
the other case the radius increases in size.

plastic stress increments can be found by computing the intersection of a line with a

circle (fig. 8.4) and are given by:

∆σpl
xz = (1− f)σtr

xz

∆σpl
xx = −(1− f)

(
σtr

xx − σtr
zz

2

)

∆σpl
zz = (1− f)

(
σtr

xx − σtr
zz

2

)
(8.32)

where

f =
− (σtr

xx+σtr
zz)

2
sin(φ) + Ccos(φ)√

(σtr
xx−σtr

zz

2
)2 + (σtr

xz)
2

(8.33)

Once plastic stress increments are known, plastic strainrates can be computed. Our

current plasticity implementation is similar to the explicit FLAC way of implementing

plasticity [e.g. Poliakov et al., 1994, Huismans et al., 2001], i.e. all plastic terms go
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to the right-hand-side. In future, this approach should be made implicit, which would

allow to take larger timesteps during plastic yielding. Moreover, more work is required

to understand the effect of visco-elasticity on stabilizing the width of shearzones. Ad-

ditional effects like fluid flow, or shear-heating (see chapter 4), are probably required

to obtain a numerically resolvable stable width of shearzones.

8.3.4 Further numerical issues

The computational grid is moved in a Lagrangian fashion if pure-shear boundary condi-

tions are employed. Boundaries between materials with a sharp variation of properties

are described by marker-chains that are moved through the computational grid by an

implicit time step algorithm. Markers are added if the distance between two markers

exceeds a given threshold. Fourier coefficients of effective viscosity and density fields

are calculated directly from this marker-chain. An advantage of such a method over

particle-based methods is that less points are needed to describe materials, and hence

the algorithm is faster. A possible disadvantage is that it is more difficult to han-

dle cases where one continuous layer becomes divided into several domains (although

it is possible to check for self-intersections of the markerchain, and construct these

domains). In the problems we solved sofar, there has been no need for such a method.

The current formulation makes it straightforward to implement no-slip or free-

slip boundary-conditions. In addition, the implementation of stress-free boundary-

conditions or any condition involving normal stresses does not require 3rd derivatives.

A free surface boundary condition is difficult to incorporate in Eulerian fixed grid

numerical codes such as the one described here. Therefore we approximate the free

surface by putting a layer of low viscosity in the upper part of the numerical box, which

is overlain by a horizontal stress-free (also called fast-erosion or fast-redistribution)

upper boundary condition. This boundary condition has an advantage over free-slip or

no-slip conditions, since it makes the upper boundary ’permeable’, and hence the ’air’

layer can be thinner then in the other cases.

The energy equation and the mechanical equations are solved sequentially, with

iterations to account for the nonlinear effects of shear-heating. Time-stepping is done

with an implicit algorithm. Since we employ a semi-Lagrangian advection scheme,

there are no numerical timestep-restrictions (e.g. by the CFL-criteria). If the effects
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Figure 8.5: A) Deviatoric stress as a function of strainrate for a viscous rheology and
different values of the stress exponent n. B) Deviatoric stress versus time for a Maxwell
linear viscoelastic rheology.

of visco-elasticity are studied, however, the timestep should be less then the Maxwell

relaxation time (= µ/G).

8.4 Verification of the numerical code

This section presents several benchmark tests that have been made to verify various

aspects of the numerical code.

8.4.1 0D rheology tests

The first test considers the effect of viscous or powerlaw rheology on deviatoric stress.

If pure-shear is applied to a homogeneous, viscous, material with a strainrate ε̇BG, the

deviatoric stress should depend on the strainrate as:

τxx = 2Bε̇
1
n
BG (8.34)

where n is the stress exponent, B a material constant and compressive stresses are

taken to be positive (fig. 8.5A).

If the rheology is linear Maxwell viscoelastic, rather then viscous, and pure-shear
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deformation is applied, the governing equations are given by:

1

2µ
τxx(t) +

1

2G

Dτxx(t)

Dt
= ε̇BG (8.35)

under pure-shear, rotational terms of the Jaumann derivative disappear, and assuming

that τxx(0) = 0 and ε̇BG = constant, a solution to (8.36) is given by:

τxx(t) = 2µε̇BG

(
1− e(−

G
µ

t)
)

(8.36)

A comparison between numerics and analytics is shown on figure 8.5B.

A Maxwell rheology under simple shear experiences the effect of the rotational

components. The governing rheological equations for a 2D plane strain case are (with

a Jaumann derivative of the stress tensor):

1

2µ
τxx +

1

2G

(
∂τxx

∂t
− τxzγ̇

)
= 0

1

2µ
τzz +

1

2G

(
∂τzz

∂t
+ τxzγ̇

)
= 0

1

2µ
τxz +

1

2G

(
∂τxz

∂t
+

(
τzz − τxx

2

)
γ̇

)
=

1

2
γ̇ (8.37)

where γ̇ = ∂vx

∂z
is assumed to be constant. Under the assumption that τxx(0) = τzz(0) =

τxz(0) = 0, one can derive an analytical solution for the stress evolution versus time:

τxx(t) = −
γ̇µG

(
(µγ̇cos(γ̇t) + Gsin(γ̇t)) exp

(
−Gt

µ

)
− µγ̇

)

µ2γ̇2 + G2

τxz(t) = −
γ̇µG

(
(Gcos(γ̇t)− µγ̇sin(γ̇t)) exp

(
−Gt

µ

)
−G

)

µ2γ̇2 + G2

τzz(t) = −τxx(t) (8.38)

These expressions exhibit a periodic oscilation which is damped on the Maxwell time-

scale. A comparison of numerically computed values and the analytical solution is

given on figure 8.6A. Stress rotation is significant for the given parameters. But does

this mean that the rotational terms are important for geodynamic settings? In order

to answer this question, it is usefull to study the stress evolution during initial stages.

A Taylor expansion of eqns. (8.38) around t = 0, reveals that τxz ∝ γ̇Gt whereas

τxx ∝ 0.5γ̇2Gt2. Rocks (or basically any material) cannot sustain differential stresses
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Figure 8.6: A) Simple shear deformation of a Maxwell viscoelastic material with µ = 2, G =
1, γ̇ = 1. B) Stress evolution (upper panel) and increase in temperature (lower panel) during
pure-shear deformation of a visco-elasto-plastic material with G = 1, µ = 2, σy = 1, ε̇BG =
1, ρcp = 1.

larger then roughly one-tenth of the elastic shear modulus (0.1/G), from where the

bonds between atoms start to break [see e.g. Scholz, 2002]. In the given experiment

such a stress is reached after t ≈ 0.1/γ̇. The other stress components are than on the

order of 0.005G (which is 5% of the shear stress). Thus for the given setup and for

geodynamically reasonable stresses, rotational terms make a rather small contribution

to the overall stress state.

The last 0-D test discussed here considers the interaction between shear-heating,

plasticity and viscoelasticity in pure-shear settings. The governing equations for an

incompressible material are:

ρcp
∂T

∂t
= 2τxx(t)

(
ε̇BG − 1

2G

∂τxx(t)

∂t

)

ε̇BG =
1

2µ
τxx(t) +

1

2G

∂τxx(t)

∂t

τxx(t) = min (τxx(t), σ
y) (8.39)

where a Von Mises plasticity model with yield stress σy was employed. Temperature

increases due to dissipative (viscous and plastic) processes. This set of ODE’s is most

readily solved numerically (MATLAB scripts are given in the appendix of Chapter 4).

A good agreement exists between the (semi-) analytical solution and results obtained
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Figure 8.7: A) Growthrate spectra as a function of dimensionless wavelength for the RT
instability with a free-slip upper and lower boundary conditions, and a mean thickness of
the low-density layer of 0.2H. Resolution employed is 201 × 8. B) Growthrate spectra for
single-layer viscous folding under pure shear compression (with a background strainrate ε̇BG).
Resolution employed is 1001× 8.

with the finite-difference/spectral method (fig. 8.6B and C). Note that shear-heating

increases significantly after plastic yielding, which is caused by vanishing elastic strain

rates.

8.4.2 Linear stability analysis of folding and RT-instability

A classical (quasi one-dimensional) test for viscous flow problems is the linear stage of

the Rayleigh-Taylor instability, for which analytical solutions are available for a range of

boundary conditions [e.g. Biot and Odé, 1965, Turcotte and Schubert, 1982, appendix

chapter 7]. Results are shown for a free-slip upper and lower boundary condition and

for viscosity contrasts between the upper and the lower fluid, which vary from 106 to

10−6 (fig. 8.7A). The numerical results have a maximum deviation of 1.5% with the

analytical results. Additional benchmarks can be found in Chapters 3, 6 and 7.

Similarly, analytical solutions exist for single layer folding of a highly viscous layer

embedded in an infinite viscous matrix [e.g. Fletcher, 1977] under overall pure-shear

conditions. Good agreement exists between numerical and analytical results (fig. 8.7B).
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A B

Figure 8.8: A) Initial stages of buckling of a viscoelastic layer embedded in a viscoelastic
matrix, with R = 1. B) Finite amplitude behavior of buckling of a layer with R = 2.
ε̇BG = 1, µl = 100 in both cases.

8.4.3 Viscoelastic buckling

The importance of elasticity in a Maxwell viscoelastic material is classically indicated

by the Deborah number, De = 2µlε̇BG/G (where µl is the viscosity, G the elastic shear

module and ε̇BG the applied background strainrate). If De > 1, elasticity is assumed

to be important, whereas for De < 1, viscous deformation dominates. Schmalholz

and Podladchikov [1999] studied the effect of elasticity on the folding instability and

demonstrated that the De-number gives a weak indication, since strainrates during

highly unstable initial phases of folding are typically much larger then the background

strainrate. They demonstrated that a different parameter, R = [µl/6µm]1/3(4µlε̇BG/G),

should be employed to indicate the importance of elasticity for folding of low-De ma-

terials (where R > 1 denotes elastic response). Figure 8.8A shows a comparison for

mean stress, coefficient of fibre stress and amplitude versus time for the initial stages

of folding of a viscoelastic layer with R = 1 [see also Schmalholz et al., 2001].

In Schmalholz [2000] a finite amplitude theory of folding of viscous and viscoelastic

layers was derived. Good agreement exists between numerical results and the FA theory

(fig. 8.8B).
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A B

Figure 8.9: Shear heating (τij ε̇ij) around a weak circular inclusion under pure-shear com-
pression. Rheology is incompressible viscous and the viscosity contrast between the matrix
and the inclusion is 10. A) Numerical result. B) Analytical result. Resolution 501× 512.

8.4.4 Stress around a weak inclusion

Most of the previous tests are 0D or 1D. Only few analytical solutions are two-

dimensional. A solution for the stress and strainrate distribution around 2D elliptical

inclusions in an incompressible viscous or elastic material is described in Schmid [2002]

and Schmid and Podladchikov [2003]. A comparison of numerical results of the amount

of shear heating with the analytical solution is shown on fig. 8.9.

8.4.5 Diapirism

A benchmark study for the finite amplitude stages of the RT-instability was presented

by van Keken et al. [1997]. A thin viscous low-density layer underlies a high-density ma-

terial. The interface between the two layers is given by Γ(x) = 0.2+0.02cos(πx/0.9142).

The results are shown on figure 8.10 and compare well with results of [van Keken et al.,

1997].

It is interesting to study the evolution of the RT instability with a free-surface up-

per boundary. The Eulerian-based numerical code described here cannot treat such a

surface in a self-consistent way. Instead, a low viscosity and density layer is added on
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211

Figure 8.10: RT-benchmark for an isoviscous case. A) geometry at various times. B)
Evolution of mean velocity versus time. Results compare well with the results of van Keken
et al. [1997]. Resolution 101× 128. Only half of the computed domain is shown.

top of the numerical domain to mimic a layer of ’air’. It is however unclear what the

thickness and viscosity of this air layer should be in order to mimic the free surface

succesfully. For this purpose, we compare solutions with different air viscosity and

thicknesses with a solution obtained with a standard FEM code (SloMo, see Appendix

B), which is able to compute the free-surface evolution naturally. The initial setup

consists of a thin layer of viscosity 0.1 and density 9, overlain by a thicker layer of vis-

cosity 1 and density 10 [see also Poliakov and Podladchikov, 1992]. The initial interface

between the two layers is given by Γ(x) = 0.3 + 0.04 cos(2πx/1.68). Both the finite

element and the finite difference/spectral code are run with an implicit timestepping

algorithm and convergence tests have been performed w.r.t. timestep. The time-

evolution of the interface reveals that the Eulerian code always slightly ’lags behind’

the Lagrangian code (fig. 8.11A). This can also be observed in the time-evolution of

the topography and diapir-head (fig. 8.11B). It can be explained by the fact that the

Eulerian approach involves interpolation of velocity from nodal points to the mark-

erchain at every timestep. This results in interpolation errors which typically reduce

the maximum velocity, and thus reduce the speed of the interface movement. Other

explanations are interpolation errors due to the reconstruction of density and viscosity

fields from the markerchain or the iterative solver. These last two explanations may

be ruled out since (1) no significant differences have been observed between runs that

were converged to various accuracy-levels and (2) the same effect has been observed in

constant viscosity cases, with a free slip upper surface (where no iterations have to be

performed).
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Figure 8.11: A) Evolution of the interface from a FEM simulation and from the
spectral/finite-difference code at various resolutions. Inset illustrates the initial setup. Differ-
ent upper boundary conditions are employed: the FEM code employs a free-surface condition.
The eulerian code adds a air layer with thickness Hair and viscosity µair. On top of this air
layer a fast-erosion (σxz = 0, σzz = 0) boundary condition is employed. B) Topography (both
A) and B) with µair = 0.01 and Hair = 0.2). C) Maximum amplitude of the diapir versus
time. D) Maximum topography versus time.
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Figure 8.12: Second invariant of strainrate tensor (red=large) for shearzones that initiate
from a weak inclusion with µ = 0.01, and for different friction angles φ. Other parameters are
ε̇BG = 1, G = 10, µ = 100 and cohesion is 0.1. Snapshots are shown after 2.2% compression.
Resolution is 101× 256.

An interesting point is the required viscosity and thickness of the upper layer in

order to succesfully mimic a free surface. The results (fig. 8.11C and D) indicate that

the viscosity should be at least 100-1000 times smaller than the viscosity of the upper

layer. The thickness of the upper layer is not crucial if a no-stress (or ’fast erosion’)

upper boundary condition is employed.

8.4.6 Shearband inclination

Non-associated Mohr-Coulomb plasticity causes shearbands to nucleate at angles dif-

ferent than 45◦ from the maximum compression direction [e.g. Vermeer and de Borst,

1984, Vermeer, 1990, Poliakov et al., 1994]. Vermeer [1990] demonstrated analytically

that the optimal orientation of a shearband is between the Roscoe angle (45◦ − ψ/2)

and the Coulomb angle (45◦−φ/2). Here, we perform tests in which the friction angle

is varied and the dilation angle ψ = 0 (consistent with the incompressible formulation).

The shearbands (fig. 8.12) initiate at an angle θ with 45◦−φ/2 < θ < 45◦−ψ/2, which

is consistent with bifurcation theory [e.g. Vermeer, 1990] and previous numerical results

[e.g. Poliakov et al., 1994].
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Figure 8.13: Second invariant of strainrate tensor for both compression and extension of
a brittle upper crust, deforming on top of a viscous lower crust for different values of the
friction angle φ (upper panels). Lower panels shows the same, but on a lithospheric scale
where the upper mantle has a friction angle of 0◦, and the upper crust a friction angle of 30◦.

An example of combined visco-elasto-plastic deformation on a lithospheric scale is

given on figure 8.13. Plastic yielding is initiated by a small notch, and by random noise

at the interface between brittle and ductile regimes. Regions with a friction angle > 0

tend to deform by plastic yielding; the upper mantle (with zero friction angle) initially

deforms by plastic yielding but later by buckling. Incorporation of additional strain

weakening mechanisms (e.g. by shear heating) may change this picture.

8.4.7 Thermal advection and diffusion

The energy equation has been verified versus analytical solutions for steady-state and

non-steady state temperature evolution for both 1D and 2D cases, with and without

radioactive heating. Figure 8.14 shows an example of a 2D test for diffusion. A 2D

Gaussian thermal perturbation of initial amplitude A0 and of half-width R evolves in

time t as

T (x, z, t) =
A0(

1 + 4t
R2

) exp

(
(x− x0)

2 + (z − z0)
2

4t + R2

)
(8.40)
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A B

Figure 8.14: Example of 2D diffusion test of a Gaussian wave. A) Comparison of numerical
solution with analytical solution at t = 0.25, for a resolution of 65× 64. Spacing of contours
is 0.05. B) Maximum temperature versus time.

where diffusivity κ = 1 and the center of the perturbation is located at (x0, z0). The

semi-Lagrangian advection scheme is tested by two different methods. The first one

is a rigid-body rotation test, during which a Gaussian perturbation is moved with the

following velocity field:

Vx(x, z) = z

Vz(x, z) = −x (8.41)

The second one is a shear-test, in which the velocity field is given by:

Vx(x, z) = − sin (π(x− 0.5)) cos(π(z − 0.5))

Vz(x, z) = cos (π(x− 0.5)) sin(π(z − 0.5)) (8.42)

Results (fig. 8.15) after one rotation (t = 2π) show that both methods are free of

artificial oscillations. The bicubic spline interpolation method has a better accuracy,

with the drawback of an increased computational time (by a factor 11 for a resolution

of 201× 64,201× 128 on the mechanical respectively the thermal grid). In addition it

should be realized that bicubic spline interpolation may result in artificial oscillations

if the interpolation is performed over step-like features, like they occur in flows with
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A B

Figure 8.15: A) Solid body rotation test of a gaussian wave with maximum amplitude 2. 50
timesteps are employed, and the reolution is 201× 128. B) Shear test at the same resolution.

strongly variable viscosity (e.g. folding, or weak inclusions). Linear interpolation will

diffuse these fields slightly, but will not produce artificial oscillations (which may lead

to blowup of the code during computation of viscoelastic flows). A comparison of

the semi-Lagrangian method with other advection schemes (see e.g. the webpage of

M. Spiegelman, http://www.ldeo.columbia.edu/ mspieg/mmm/) learns that the semi-

Lagrangian method is as least as accurate as other methods for the rigid body rotation

test, and is more accurate for shear-flows. We typically employ linear interpolation in

our simulations.

8.5 Conclusions

The Eulerian spectral/finite difference method is a promising tool for modeling geo-

dynamic problems, since it can deal with large deformations. Here we describe an

algorithm which solves the governing equations for a slowly-moving incompressible

fluid with a nonlinear Maxwell viscoelastic rheology coupled with non-associated Mohr-

Coulomb plasticity. Benchmarks tests are described for various aspects of the code,

ranging from 0D rheology-tests through RT and folding-instabilities, and the initiation

of frictional shearbands.



234 CHAPTER 8. NUMERICAL METHOD

8.6 Appendix A: stress rotation

Rotation of a stress tensor about an angle θ can be expressed in 2D as [Turcotte and

Schubert, 1982]:

τnew
xx = τxx cos2(θ) + τzz sin2(θ)− τxz sin(2θ)

τnew
zz = τxx sin2(θ) + τzz cos2(θ) + τxz sin(2θ)

τnew
xz =

1

2
(τxx − τzz) sin(2θ) + τxz

(
2 cos(θ)2 − 1

)
(8.43)

A Taylor expansion for θ → 0 gives:

τnew
xx = τxx − 2θτxz

τnew
zz = τzz + 2θτxz

τnew
xz = τxz + θ (τxx − τzz) (8.44)

Vorticity is given by equation 8.20. We can thus write:

τnew
xx = τxx + τxz

(
∂vx

∂z
− ∂vz

∂x

)
dt

τnew
zz = τzz − τxz

(
∂vx

∂z
− ∂vz

∂x

)
dt

τnew
xz = τxz +

(
τxx − τzz

2

)(
∂vx

∂z
− ∂vz

∂x

)
dt (8.45)

The Jaumann objective derivative of the stress tensor is given by [e.g. Altenbach and

Altenbach, 1994]:

τ∇ij =
∂τij

∂t
+ τikWkj −Wikτkj (8.46)

where Wij = 1
2

(
∂vi

∂xj
− ∂vj

∂xi

)
. Spelled out for the 2D case, (8.46) reads:

τ∇xx =
∂τxx

∂t
− 2Wxzτxz

τ∇zz =
∂τzz

∂t
+ 2Wxzτxz

τ∇xz =
∂τxz

∂t
−Wxz (τxx − τzz) (8.47)

After making an explicit timestep discretization, (8.45) is obtained from (8.47).
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8.7 Appendix B: finite element formulation

The ’standard’ finite element code employed to produce figure 8.11 is a personally de-

veloped two-dimensional code, which employs either the seven-node Crouzeix-Raviart

triangle [Crouzeix and Raviart, 1973] or a nine-node quadrilateral element [Q2-P1

element, Boffi and Gastaldi, 2002] to solve the Stokes equations for incompressible

materials under plane strain. The rheology is nonlinear temperature-dependent visco-

elasto-plastic with Mohr-Coulomb plasticity. A mixed formulation is employed, with

linear, discontinuous, shape-functions for pressure and quadratic shape functions for

velocity to avoid spurious pressures [Pelletier et al., 1989]. Uzawa-type iterations are

employed to satisfy the incompressibility constraint [Cuvelier et al., 1986]. In this work,

the code has been used in a Lagrangian fashion, with regular remeshing to deal with

large deformations [see also e.g. Poliakov and Podladchikov, 1992]. The code has been

extensively tested, for example with most of the tests described in this work.
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M.A. Biot and H. Odé. Theory of gravity instability with variable overburden and

compaction. Geophysics, 30:153–166, 1965.

D. Boffi and L. Gastaldi. On the quadrilateral Q2-P1 element for the Stokes problem.

International Journal of Numerical Methods in Fluids, 39:1001–1011, 2002.

J. Braun and M. Sambridge. Dynamic Lagrangian Remeshing (DLR): A new algorithm

for solving large strain deformation problems and its application to fault-propagation

folding. Earth and Planetary Science Letters, 124:211–220, 1994.

U.R. Christensen and H. Harder. Three dimensional convection with variable viscosity.

Geophysical Journal International, 104:213–216, 1991.

M. Crouzeix and P.A. Raviart. Conforming and nonconforming finite-element methods

for solving stationary stokes equations. Revue Francaise D’Automatique Informatique

Recherche Operationnelle, 7 DEC:33–75, 1973.

C. Cuvelier, A. Segal, and A.A. van Steemhoven. Finite Element Methods and Navier-

Stokes Equations. Mathematics and its applications. Reidel Publishing Company,

Dordrecht, 1986.

R. C. Fletcher. Folding of a single viscous layer - exact infinitesimal amplitude solution.

Tectonophysics, 39(4):593–606, 1977.

R. S. Huismans, Y. Y. Podladchikov, and S. Cloetingh. Transition from passive to

active rifting: Relative importance of asthenospheric doming and passive extension

237



238 BIBLIOGRAPHY

of the lithosphere. Journal of Geophysical Research-Solid Earth, 106(B6):11271–

11291, 2001.

A. V. Malevsky and D.A. Yuen. Characteristics-based methods applied to infinite

prandtl number thermal convection in the hard turbulent regime. Physics of Fluids,

3(9):2105–2115, 1991.

G. Marquart. On the geometry of mantle flow beneath drifting plates. Geophysical

Journal International, 144:356–372, 2001.
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Appendix A

Aftershocks driven by a high
pressure CO2 source at depth1

Abstract Inspectors surveying the Assisi Cathedral following a magnitude 5.7

earthquake were trapped and killed when a magnitude 6 earthquake struck nine hours

later and collapsed the weakened structure. These two earthquakes marked the be-

ginning of a sequence that lasted more than 30 days, with thousands of aftershocks

including four additional events with 5 <Mw < 6. This normal-faulting sequence is not

well-explained with models of elastic stress transfer [Stein, 1999, Cocco et al., 2000],

particularly the persistence of hanging-wall seismicity [Chiaraluce et al., 2003] that

included two events with Mw > 5. Here we show that this sequence was driven by

a fluid pressure pulse generated from the co-seismic release of a known deep source

[Chiodini and Cioni, 1989] of trapped high-pressure CO2. Using precise hypocenter lo-

cations [Waldhauser and Ellsworth, 2000] and a simple model of non-linear diffusion, we

show a strong correlation between the high pressure front and the aftershock hypocen-

ters over a two week period. The 10-20 MPa triggering amplitude of the pressure

pulse overwhelms the typical 0.1-0.2 MPa range from stress changes in the usual stress

triggering arguments [Stein, 1999, Toda et al., 2002]. We propose that aftershocks

of large earthquakes may in general be driven by the co-seismic release of trapped,

high pressure fluids propagating through damaged zones created by the mainshock,

thus providing a link between earthquakes, aftershocks, crust/mantle degassing and

1This work has been published in: Miller, S.A, Collettini, C., Chiaraluce, L., Cocco, M., Barchi,
M., Kaus, B.J.P. (2004) Aftershocks driven by a high pressure CO2 source at depth., Nature 427.
724-727.
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earthquake-triggered large scale fluid flow.

A.1 Introduction

The 1997 Umbria-Marche seismic sequence in the Northern Apennines, Italy (Fig.

A.1a) occurred on shallow-dipping (∼ 40◦) normal faults, migrating from NNW to

SSE along an area of about 40 km in length and 15 km in width. Structural geology

studies show the earthquakes nucleate close to the deeper portion of a thrust, and that

the faults were not optimally oriented relative to the regional stress field [Collettini,

2002]. Non-optimally oriented faults become seismically active either because of lower

friction coefficients or the presence of fluid pressures in excess of hydrostatic [Sibson,

1992, Cox, 1995, Miller and Olgaard, 1996, Streit and Cox, 2001].

A geologic cross section integrating surface geology with seismic reflection profiles

[Reuter et al., 1980, Mirabella and Pucci, 2002, Fig. A.1b] shows that the first two

mainshocks nucleated in the Triassic evaporites (made up of alternating anhydrites and

dolomites). All Mw > 5 earthquakes nucleated in the evaporites, the same lithologic

unit where CO2 at near-lithostatic pressure was encountered in the San Donato Bore-

hole at a depth of 4.8 km about 50 km NW of Colfiorito [Chiodini and Cioni, 1989]. The

tectonic environment of the Northern Apennines is suitable for trapping high pressure

fluids derived from CO2 mantle degassing [Chiodini et al., 2000, Quattrocchi, 1999],

and in particular, the Rasiglia spring in the epicentral region shows an area-averaged

deep CO2 production rate [Reuter et al., 1980] of approximately 6× 105 mol m−2 yr−1.

We show that the driving mechanism for this earthquake and aftershock sequence

is the co-seismic release and propagation of the trapped high pressure source into the

overlying carbonates at hydrostatic pore pressure. Co-seismic fracturing of the seal

separating these two distinct pressure states initiates the rapid propagation of a pres-

sure pulse along the newly formed, highly permeable fault zone and into the adjacent

damage zone. The newly fractured crust provides high permeability channels to prop-

agate the pulse and trigger seismicity by significantly reducing the effective normal

stress acting on incipient slip planes. In addition, recognizing that the earthquakes

and aftershocks themselves create new fractures results in a large-scale permeability

structure that increases significantly as the sequence evolves. This is shown by recast-
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Figure A.1: Geologic setting of the study area. A) Seismicity and major structures of
the Colfiorito region of the Northern Appennines, Italy. The region consists of a complex
pattern of thrusts, folds and normal faults reflecting two main tectonic phases: A Miocene-
Pliocene compressional phase forming E-NE verging thrusts and folds; and a superimposed
upper Pliocene-Quaternary extensional phase forming basins bounded by NNW-SSE trending
normal faults [Reuter et al., 1980, Mirabella and Pucci, 2002]. Near lithostatic pore pressure
(CO2) measured in the San Donato borehole (see inset) was encountered in the evaporates
and just below the seal of a sub-horizontal thrust. All M > 5 earthquakes nucleated in the
evaporates. B) Geologic cross-section calibrated from geology and surface profiles [Mirabella
and Pucci, 2002], with the simplified model shown superposed (see also Fig. A.3)
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ing the epicenters (Fig. A.1a) as the approximate slipped area of the sequence (Fig.

A.2a), demonstrating how the entire region evolves to a complex system of fractures

that provide conduits for propagating the pressure pulse.

A.2 Aftershock patterns

There are two regions of interest for this study. The first is the largest event of the

entire sequence (Event 3), and its associated aftershocks (Fig. A.2a). We can ap-

proximate and model this sequence by projecting the aftershocks onto a 2-dimensional

profile (A-A’) that also corresponds to the geologic cross-section in Fig. A.1b. The

second region of interest is the sequence propagating to the SSE, where the observed

propagation velocity (Fig. A.2b) can be used to estimate the structural permeability

of the system, and to show supporting evidence for the high permeability used in the

model. Fig. A.2b shows that this sequence propagated at a relatively constant veloc-

ity about 1 km day−1, similar to the velocity of CO2-driven seismicity inferred from

a swarm system [Bruer et al., 2003], and for induced seismicity in a deep borehole

[Baisch and Harjes, 2003]. A fluid-pressure induced sequence with a constant propa-

gation velocity is consistent with the wave-like solutions of a pressure pulse found for

flow problems where permeability is a strong non-linear function of the effective normal

stress acting on the fracture [Rice, 1992, Revil and Cathles, 2002]. Assuming that the

observed propagation velocity reflects the velocity of a wave-like pulse, we can roughly

estimate the large-scale permeability of the system using the relationship [Rice, 1992]

v = kγ
ηφ

, where v is the pulse velocity, k is the intrinsic permeability, γ is the weight

density difference between the rock and fluid, η is the viscosity, and φ is the porosity.

Taking γ = 1.7 MPa m−1, η = 10−3 Pa−s, φ =.05, and using the observed v, then

k = 4 × 10−11m2. This is a very large permeability compared to the 10−16m2 inferred

for crustal permeability in tectonically stable environments [Manning and Ingebritsen,

1999], but lower than the permeability inferred for the Dobi extensional earthquake

sequence in Central Afar [Noir et al., 1997], and consistent with permeability measure-

ments on rough fractures in granite and marble at low effective normal stress [Lee and

Cho, 2002].



A.2. AFTERSHOCK PATTERNS 245

Figure A.2: Map view of the seismicity and the rate of propagation. (a) The seismicity
in Fig. A.1a is recast as the approximate area fractured in the earthquake or aftershock
to illustrate how the earthquake or aftershock themselves drastically alter the structural
permeability of the system. Patches show the slipped area using the relation M = GAū,
where M is the scalar seismic moment, G is the shear modulus (30 GPa), ∆σ is the stress
drop (assumed 1.5 MPa), and slip is calculated from ∆σ = 2G

π
ū
W . The events are color-

coded to show the events (yellow) compared to the model results, and include all events
with M > 2.4 between the hypocenter of event 3 and about 7 km to the NW. Section A-A’
corresponds to the cross section in Fig. A.1b and represents an approximate 2-D profile
onto which the hypocenters of events shown in yellow are projected. Events shown in blue
are plotted in (b) as the distance from the hypocenter of event 3 vs. time to estimate the
structural permeability of the system. It is the length of the vector between hypocenters,
and therefore includes both the horizontal and up-dip migration of the sequence. The linear
correlation implies that the propagation velocity is faster than the t1/2 diffusion time-scale,
and a least squares fit shows that this sequence propagation at ∼ 1 km d−1 (that is, ∼ 10−2

m s−1).
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A.3 Modeling results

Modelling the 3-dimensional flow field is beyond the scope of this letter, but we can

simplify by considering the 2-dimensional profile perpendicular to the strike of Event

3. All aftershocks with Mw > 2.4 in volume surrounding Event 3 are projected onto

the 2-dimensional profile (A-A’) for comparing with model results. We model this se-

quence by numerically solving a non-linear diffusion equation with an effective-stress

dependent permeability (see methods). In the initial conditions, an impermeable seal

separates the upper region at hydrostatic fluid pressure from the high-pressure source

region where the initial fluid pressure was taken at 85% of lithostatic [Chiodini and

Cioni, 1989] (for example 70 MPa) at the upper boundary of the source region. A

hydrostatic pressure gradient is imposed below the seal, corresponding to no-flow con-

ditions prior to the earthquake. Flow initiates at t = 0, when a model fault and damage

zone approximately 400m in width (field observations show damage zones from 200-

600m) cuts the high pressure region and extends to about 1 km below the surface.

This simulates the co-seismic fracturing of the pore pressure seal. The sudden com-

munication between the high-pressure source and low-pressure surroundings initiates

a pressure pulse that propagates along the fault and into the hanging and footwalls.

The evolution of the propagating pressure front and the fluid pressure field (Fig.

A.3) are superposed with the hypocenters of aftershocks for period indicated in each

figure. The steep front is a consequence of the wave-like solution for pressure-dependent

permeability, in contrast to a more diffuse front resulting from linear diffusion. At early

times (Fig. A.3a-b), the pulse propagates rapidly up the fault zone, leaving in its wake

a slower moving pulse into the matrix material of the hanging and footwalls. The faster

propagation into the hanging wall relative to the footwall is a result of the decreasing

σn (thus increasing permeability) as the pulse propagates to shallower depths. As the

pulse reaches the hydrostatic boundary condition imposed at the surface, the pressure

is reduced but the pulse continues to propagate. The high-pressure front arrives and

triggers Event 4 (Fig. A.3d), which we model by introducing a second fault (with the

same properties as the original fault) extending into the source region (dotted line).

Because this new high permeability fault extends into the source region, the system

is recharged and generates additional aftershocks (Fig. A.3e). The subsequent pulse

propagates to the location of event 5 (Fig. A.3f), triggering additional seismicity (Fig.
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Figure A.3: Comparison of model results with initial conditions (top) to the hypocenters of
aftershocks shown in yellow in Fig. A.2a. Model results are plotted as the rate of pore pressure
increase to highlight propagation of the pressure front (left column), and the corresponding
evolution of the entire fluid pressure field (right column). The left column compares the
evolution of the pore pressure front to the aftershocks occurring during the times indicated.
The overall fluid pressure field is superposed with the cumulative aftershock catalogue. The
largest event in the sequence (Event 3) and subsequent large aftershocks in the hanging wall
(Events 4 and 5) are indicated in a),c), and e).
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A.3g). Aftershocks for events 4 and 5 correlate with the rapid propagation of a pulse

into the already highly pressurized footwalls of these events.

The evolution of the total fluid pressure in the system (right column of Fig. A.3)

shows that the data is matched both in space and through time and follows the structure

of the evolving fluid pressure field. The aftershocks in the high-pressure source region

appear to correlate with contours of reduced fluid pressure. In this case, the mechanism

of triggering is more likely the transition from aseismic slip at high pore pressures to

seismic slip as fluid pressure is reduced [Segall and Rice, 1995], or alternatively, a

complex source region.

A.4 Aftershock triggering

Our model presents an alternative interpretation of the physical processes controlling

earthquake triggering in the neighborhood of the causative fault. Several studies have

shown correlations with stressing rate changes [Dieterich, 1994, Toda et al., 2002],

static stress transfer [Stein, 1999], or poro-elastic effects [Nur and Booker, 1972, Bosl

and Nur, 2002]. These models rely on extremely small stress changes (∼ 0.1 MPa)

and therefore have not unequivocally demonstrated that simple static stress changes

or poro-elastic effects are the dominant mechanism of earthquake triggering or driving

aftershocks. The change in Coulomb failure stress (∆CFS) is defined as ∆CFS =

∆τ + µ(∆σn + ∆Pf ), where ∆τ and ∆σn are the shear and normal stress changes

(positive in extension), and Pf is the change in pore pressure. Attempts to relate this

earthquake sequence to ∆CFS from shear stress changes failed to explain this sequence

[Cocco et al., 2000], particularly for the persistence of aftershocks in the hanging wall

[Chiaraluce et al., 2003]. Fig. A.4a shows the aftershock data with the ∆CFS (for

stress changes only) for Event 3, and Fig. A.4b compares the same aftershock with the

calculated pressure field.

In most ∆CFS formulations, the focus is primarily on changes in τ and σn, and

it was found to be difficult to include poro-elastic effects [Cocco and Rice, 2003]. For

Event 3, ∆CFS from shear and normal stress changes are on the order of a few tenths

of MPa. Significantly, our results show that the effect from a 10-20 MPa direct fluid

pressure loading (for example ∆Pf ) overwhelms static stress transfer.
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Figure A.4: Comparison of aftershock data to shear stress changes in the formulation and
pore pressure changes. a) There is obviously no correlation between positive or negative
regions and the aftershock locations. In contrast (b), the same aftershock data compared
to the calculated fluid pressure state after 11 days shows a very strong correlation with the
entire aftershock sequence (see also Fig. A.3).

A.5 Conclusions

The structural, seismic, and post-seismic response of this sequence support a scenario

where high pressure CO2 infiltrated the incipient seismic fault prior to the large earth-

quakes, followed by a large scale change in the hydraulic properties of the system. The

co-seismic fracture generated a high amplitude pressure pulse initiating at the high-

pressure/low pressure boundary, propagating into the damaged region caused by the

mainshock. The increased fluid pressure triggered subsequent earthquakes and after-

shocks by significantly reducing the effective normal stress. The results also suggest

that the aftershocks in regions of increasing pore pressure occur along contours of con-

stant σ̄n, implying that earthquakes occurred at the same shear stress (assuming a

constant friction coefficient) independent of depth. Since the effect on ∆CFS due only
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to pore pressure changes is orders of magnitude greater than the contribution of elastic

stress transfer, we propose that this mechanism dominates some triggering phenomena

and aftershock sequences. Although this sequence was driven by CO2 out-gassing, the

processes of fracture and co-seismic hydraulic property changes are general, suggesting

this is an important general mechanism of aftershock generation. That is, earthquakes

provide the trigger to hydraulically connect the upper crust at hydrostatic pore pres-

sure with the lower crust at near-lithostatic pore pressure. The subsequent flow will

be fast, high pressured, and will propagate readily into the new fractures created by

the main event.
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A.6 Methods

We adopt the model of Rice [1992] where permeability is a strongly decreasing function

of effective normal stress, k = f(σ̄n). Specifically, k = k0exp(−σ̄n/σ
∗), where k0 is

the permeability at zero effective stress, and σ∗ is a constant with lower values of

corresponding to highly cracked rocks. Using this form for the permeability, we solve

the diffusion equation with a spatially variable permeability [Wong et al., 1997]:

∂P

∂t
=

1

φ (βf + βφ)

(
5k0exp

(− σ̄n

σ∗
)

η
5 P + Γ̇(P, T )

)
(A.1)

where P is the fluid pressure above hydrostatic, βf and βphi are the fluid and pore

(crack) compressibility, and Γ̇ is a source term. The source term is assumed zero here,

but is included in Equation A.1 to show that the pressure-dependence of the dehydra-

tion (or de-carbonization) kinetics could provide an additional direct fluid source from

co-seismic fluid pressure reductions [Miller et al., 2003]. The effective normal stress

used in Equation (A.1) and acting on fault planes is calculated as [Jaeger and Cook,

1979]:

σ̄n =
σ1 + σ3 − 2Pf

2
+

σ1 − σ3

2
cos2θ (A.2)

where σ1 and σ3 are the maximum and minimum principal stress, Pf is the total fluid

pressure (for example, P +ρwgz), and θ is the dip angle. We take θ = 40◦ (determined

from the earthquake focal mechanisms), σ1 as the weight of the overburden (for example

ρrgz), where ρr is the rock density, and we assume σ3 = 0.7σ1 to reflect this extension

tectonic environment.

We solve Equation A.1 with an implicit finite difference scheme, using the simpli-

fied model geometry and initial conditions shown at the top of Fig. A.3. A no-flow

boundary condition is imposed on all boundaries except the upper surface, where a

constant head (e.g. hydrostatic pore pressure) boundary condition is imposed. We

use crack compressibility βφ = 10−8 MPa−1, fluid compressibility βf = 10−10MPa−1,

and a temperature-dependent viscosity for water (assuming a temperature gradient of

25◦C km−1). We assume that the flow properties of supercritical CO2 (the phase of

CO2 at the source depth) are the same as for water because CO2 at this P-T condition

is 10 times more compressible than water, but it is of the same order less viscous,

resulting in similar flow properties. Note that the model can be made much more com-
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plicated by considering two-phase flow, dual-porosity, anisotropic permeability, and

other complexities. However, we find this simple model sufficient to show a very strong

correlation between the calculated pressure field and the precise locations of aftershock

hypocenters.
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