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Abstract—In computational geodynamics, the Finite Element

(FE) method is frequently used. The method is attractive as it easily

allows employment of body-fitted deformable meshes and a true

free surface boundary condition. However, when a Lagrangian

mesh is used, remeshing becomes necessary at large strains to

avoid numerical inaccuracies (or even wrong results) due to

severely distorted elements. For this reason, the FE method is

oftentimes combined with the particle-in-cell (PIC) method, where

particles are introduced which track history variables and store

constitutive information. This implies that the respective material

properties have to be interpolated from the particles to the inte-

gration points of the finite elements. In numerical geodynamics,

material parameters (in particular the viscosity) usually vary over a

large range. This may be due to strongly temperature-dependent

rheologies (which result in large but smooth viscosity variations) or

material interfaces (which result in viscosity jumps). Here, we

analyze the accuracy and convergence properties of velocity and

pressure of the hybrid FE-PIC method in the presence of large

viscosity variations. Standard interpolation schemes (arithmetic

and harmonic) are compared to a more sophisticated interpolation

scheme which is based on linear least squares interpolation for two

types of elements (Q1P0 and Q2P�1). In the case of a smooth

viscosity field, the accuracy and convergence is significantly

improved by the new interpolation scheme. In the presence of

viscosity jumps, the order of accuracy is strongly decreased.

Key words: Numerical modeling, Particle-in-cell, Finite ele-

ment method, Interpolation.

1. Introduction

1.1. Background

In the last two decades, numerical models have

increasingly become a valuable tool to grasp the

underlying physics of geological processes ranging

from mantle convection to grain-scale processes.

However, geodynamic processes entail a number of

physical characteristics, which are challenging from a

numerical modelling perspective.

The deformation of Earth materials is commonly

governed by three major rheologies: elastic, viscous

and plastic deformation. Viscous deformation can be

accommodated through a variety of solid-state creep

mechanisms, ranging from (grain size sensitive)

diffusion creep over dislocation creep to highly

nonlinear Peierls creep. At low pressures and suffi-

ciently high stresses, brittle failure (also being highly

nonlinear) dominates. Additionally, elasticity signifi-

cantly influences deformation at low temperatures and

on short timescales. The rheologies describing the

different deformation mechanisms are also strongly

dependent on the chemistry of the deforming rock.

The Earth’s mantle and lithosphere are strongly

heterogeneous. Numerical codes, thus, have to be

able to accurately track and advect material proper-

ties and history variables (temperature, grain size,

chemistry, damage, etc.) throughout the model.

Faults—brittle or ductile—in the lithosphere repre-

sent sharp contrasts in effective viscosities. In Fig. 1

we show the viscosity field and the viscosity contrast

within a finite element of a typical ’realistic’

subduction simulation. Subduction is initiated using

a weak zone (weak in the sense that is has a low

cohesion (1 MPa) and a zero friction angle) that

decouple the two adjacent oceanic plates (which

consist of an upper crust, a lower crust and a

lithospheric mantle). The rheology is viscoplastic

with a power-law rheology for the viscous deforma-

tion (with olivine parameters in the mantle) and

plastic deformation is modeled using a Drucker-

Prager yield criterion (the setup was inspired, but not

identical to the one used in QUINQUIS and BUITER
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2013). Resolution is 1,201 9 401 nodes. In this

example Q2P�1 elements were employed. One can

clearly see that the highest viscosity contrasts occur

close to the surface and in the weak zone, which is

due to plastic failure. In regions where ductile creep

is dominant, viscosity contrasts are much lower, and

often less than a factor 6.

It has been shown that variations in viscosity

within a single element can lead to a significant

decrease in the quality of the numerical solution

(MACKINNON and CAREY 1987; MORESI et al. 1996).

Furthermore, MORESI et al. (1996) showed that the

accuracy of the numerical solution can directly

depends on the magnitude of the variation of

viscosity within an element. Additionally, the con-

vergence of numerical solvers can significantly

decrease when the viscosity fields exhibit jumps

(e.g., ALBERS 2000; MAY and MORESI 2008; TACKLEY

2000; TROMPERT and HANSEN 1996). Therefore, if one

wants to obtain accurate solutions for problems with

strong and sharp viscosity contrasts, it is advisable to

use an unstructured grid together with higher order

shape functions (DEUBELBEISS and KAUS 2008)

designed such that element boundaries conform to

the jumps in viscosity.

When studying processes over million year time

scales, the material will undergo severe mixing and

experience extremely high strains (large deforma-

tion). In this regime, using body fitted methods

becomes becomes unfeasible. Hence, it is therefore

necessary to develop alternative methods which can

still track sharp variations in material properties in a

large deformation regime without requiring unstruc-

tured, body fitted meshes.

To simulate geological processes, it is typically

required that (1) we can represent compositionally

distinct materials (e.g., interface tracking) and (2)

within each composition, we can track the evolution

of volumetric history variables such as accumulated

plastic strain, or elasticity. The evolution of the

material interfaces and history variables are given by

an advection equation (e.g., no diffusion is present).

Excluding using body fitted meshes, which follow

the evolution in a Lagrangian manner, there are several
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Figure 1
Viscosity fields and viscosity contrasts in ’realistic’ mantle-lithosphere models. In the top row, the viscosity field of a typical subduction

simulation is shown. Dashed boxes mark the location of two zoomed in regions where viscosity contrasts per element are plotted (bottom

row). Solid black lines denote boundaries between different lithological layers
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approaches to represent interfaces. Interfaces can be

described using a scalar quantity f, where f = 0, f = 1

denote the regions on either side of the interface and the

iso-surface f ¼ 1
2

denotes the interface. The classical

Level sets method (OSHER and FEDKIW 2003; SETHIAN

1999) provides an equivalent, yet more compact

representation, compared to the field method as it

describes the interface in a lower spatial dimensional.

Whilst both methods enable topologically complex

interface geometries to be represented, they both

require an accurate grid based advection solver.

Accurate grid based advection solvers can be

constructed using high order finite volume (FV)

discretisations combined with flux limiters (TVD,

ENO, WENO, etc) (LEVEQUE 2002). Similarly, high

order (in space and time) discontinuous Galerkin

(DG) discretisations (COCKBURN and SHU 1998;

COCKBURN et al. 2000) have also proven to be robust

for pure advection equations. Whilst those methods

are sufficiently accurate and are suitable for evolving

equations associated interface and history variable

evolution, their implementation is involved and the

methods are computationally expensive. Moreover, it

is not straightforward to implement such methods in

the case where phase transitions occur, or where

jumps in viscosity develop spontaneously during a

simulation once shear bands form. Yet, this is a

situation that is quite typical in numerical simulations

of lithosphere dynamics.

Another possibility to represent material inter-

faces, which avoids the need for a grid based

advection solver, is the marker-chain method (VAN

KEKEN et al. 1997). When large strain deformation

occurs, this method may break down due to overlap-

ping marker-chains. The method is also non-trivial to

implement in 3D (although see KAUS and PODLADCHI-

KOV 2001 for a geodynamic application). In addition,

the marker-chain method does not provide a mech-

anism to track history variables within the respective

material domains.

An elegant solution, which allows one to represent

compositionally distinct materials and track history

dependent information, is to employ ‘‘particle meth-

ods’’ in which the material properties are represented

by a set of independent Lagrangian points. Advection

of composition (volumetric representation of the

interface) and history variables is achieved by simply

updating the particles position—thus, these methods

do not suffer from numerical difficulties associated

with grid based equation solvers. Furthermore, there is

no assumed connectivity between particles, thus,

topologically complex material interfaces in 3D can

be trivially represented. The robustness and ease of

their implementation (particularly in 3D) have made

particle methods popular within the geodynamics

community (e.g., GERYA 2003; MORESI et al. 2003;

POLIAKOV and PODLADCHIKOV 1992; TACKLEY and KING

2003). Despite the wide spread usage of the particle

method, few studies have provided a detailed analysis

of the accuracy of this method (DEUBELBEISS and KAUS,

2008; DURETZ et al. 2011).

Despite the advantages of the hybrid methods,

there are several issues concerning their accuracy.

Solving the governing equations on a grid and storing

the material properties on particles requires interpo-

lating various physical quantities between the

particles and the grid points. The accuracy of this

interpolation step might depend on both the number

of particles per cell and the interpolation scheme

used. DEUBELBEISS and KAUS (2008) analyzed how

both the spatial discretisation used to solve the

variable viscosity Stokes problem and the interpola-

tion technique (arithmetic, harmonic or geometric

interpolation) applied to either viscosity or density

influenced the numerical accuracy of the velocity and

pressure field. They found that the choice of the

‘‘best’’ averaging method is both dependent on the

physical problem and the physical parameter (e.g.,

viscosity or density) which has to be interpolated.

DURETZ et al. (2011) conducted a study where they

investigated the convergence properties of the inter-

polation method used in GERYA (2003). They found

that the accuracy of the numerical solution can be

significantly increased when using a more local

support for the interpolation in combination with

staggered finite difference methods .

1.2. Motivation

Finite element methods have been widely used to

model mantle and lithosphere dynamics by using a

continuum description which resembles a steady

state, incompressible variable viscosity Stokes for-

mulation. In considering geodynamic applications,
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we note that the exterior boundary of the modeling

domain (e.g., the sphere of the Earth) is relatively

simple. Furthermore, even with the inclusion of a free

surface or a landscape evolution model, the resulting

topography development does not create a complex

exterior boundary. Thus, here we use regular meshes

with quadrilateral elements to discretize the geometry

of the domain. Internal geometric complexities will

be represented using a particle-in-cell (PIC) scheme.

In the finite element approach, the weak form of

the governing equations is developed by discretizing

the model domain into a set of non-overlapping

elements. Within each element, the unknown quan-

tities are approximated via locally defined

interpolants (or shape functions). The weak formula-

tion involves the evaluation of integrals defined

element wise. These integrals are approximated via

numerical quadrature, e.g., Gauss–Legendre (e.g.,

ZIENKIEWICZ et al. 2005). For such quadrature

schemes, it is necessary to define a set of points

where the integrand will be evaluated and integration

weights which will then be used in the quadrature

summation. In hybrid finite-element-particle-in-cell

schemes (FE-PIC), it is required to interpolate the

needed properties from the particles to the quadrature

points. Interpolation methods like the ones used in

(DEUBELBEISS and KAUS 2008) result in the prescrip-

tion of a single value for a given property on all

quadrature points in an element. However, the finite

element method permits material parameters to vary

within the element, thus, resulting in a better spatial

representation of material parameters. Using interpo-

lation methods that prescribe one single value to all

quadrature points, therefore, does not exploit the full

potential of the method and might unnecessarily limit

its accuracy. For this reason, we here introduce an

interpolation method which allows properties to vary

throughout the element and investigate the error and

order of accuracy of the hybrid FE-PIC numerical

method. Accuracy is assessed by comparing analytic

solutions to variable viscosity Stokes flow to numer-

ical experiments using different marker and grid

resolution, as well as differing interpolation schemes.

In this study, we use the code MILAMIN_VEP (e.g.,

KAUS et al. 2010), which is based on MILAMIN

developed by DABROWSKI et al. (2008), but is

extended by remeshing, visco-elasto-plastic

rheologies as well as a particle-based method to

advect material properties. Here, we focus on the

effect of the particle-based method on both the

accuracy and convergence rate of the numerical

solution of three idealized geodynamic model con-

figurations for which analytical solutions exist.

2. Governing Equations

In geodynamics, the deformation of rocks over

long time spans is (in its simplest form) described via

the incompressible Stokes equations. The conserva-

tion of mass and momentum is given by

ovi

oxi

¼ 0; ð1Þ

� op

oxi

þ osij

oxj

¼ �qgi ð2Þ

where vi denotes velocity, p pressure, sij the devia-

toric stress tensor and gi gravitational acceleration. In

the case of an isotropic, linear viscous material, the

deviatoric stress tensor can be related to the strain

rate tensor _eij using

sij ¼ 2g _eij; ð3Þ

where g is the shear viscosity and _eij is defined as

_eij ¼
1

2

ovi

oxj

þ ovj

oxi

� �
: ð4Þ

Whilst there are no time derivatives in the Stokes

equations, the coefficients ðg; qÞ evolve according to

Dg
Dt
¼ 0;

Dq
Dt
¼ 0; ð5Þ

thereby introducing a temporal dependency.

3. Numerical Method

We solve the governing Eqs. (1) and (2) expressed

in the primitive variables vi; p; using a mixed finite

element discretization. Here we use two types of

quadrilateral elements: Q1P0 elements with linear

shape functions for velocity and a constant shape

function for pressure and Q2P�1 elements with qua-

dratic shape functions for velocity and linear

M. Thielmann et al. Pure Appl. Geophys.



discontinuous shape functions for pressure. Evalua-

tion of the element bilinear form for the viscous stress

gradient and linear form for the forcing function are

approximated via numerical quadrature, i.e.,Z
Xe

g _̂eij _̂eij dV �
X

q

wqgðnqÞ _̂eijðnqÞ _̂eijðnqÞ det JðnqÞ

ð6Þ

andZ
Xe

Nqgi dV �
X

q

wqNðnqÞqðnqÞgi det JðnqÞ; ð7Þ

where Xe is the element domain, _̂eij is the discrete

strain rate operator, N is the basis function chosen for

vi;J is the coordinate transformation between Xe and

the reference element and nq is the local coordinate of

the qth quadrature point with weight wq: Lagrangian

markers are employed to store the material parame-

ters (density q, viscosity g) of different rock types.

The marker properties are then used to define the

quadrature points values qðnqÞ; gðnqÞ within each

element Xe via an interpolation procedure.

3.1. Piece-wise Constant Interpolation

Many numerical codes used in the geodynamical

community employ a particle-in-cell scheme, where

lithological properties are stored on a set of Lagrang-

ian markers. The material property U has to be

projected onto the quadrature points used to evaluate

the weak form associated with the finite element

formulation. A number of piece-wise constants (over

each element Xe) with interpolation schemes can be

defined. Two of the most common schemes are:

– Arithmetic average:

Ue ¼
P

p UpP
p 1

; ð8Þ

– Harmonic average:

Ue ¼
P

p 1P
p U�1

p

; ð9Þ

where p is the index of each particle located within

inside element e. The value of U assigned to each

quadrature point with element e is simply

UðnqÞ ¼ Ue. Note that both interpolation schemes

define a constant value of U over the entire element.

Thus, the spatial variation of material parameters

inside the element is absent. Commonly, arithmetic

averaging is used for density interpolation. The

physical meaning of those two averaging schemes—

when used for viscosity averaging—has been dis-

cussed in SCHMELING et al. (2008). The main points are

that harmonic averaging corresponds to a rheological

model where two viscous elements are in series. This

model correctly describes the volume-averaged effec-

tive viscosity in a situation where the compositional

interface is aligned parallel to the flow (e.g., channel

flow or simple shear), where the effective viscosity is

governed by the weaker of the two viscosities.

Arithmetic averaging, on the other hand, corresponds

to two viscous elements in parallel, thus, the stronger

viscosity will dominate the effective viscosity. This

situation can be found in regions where the interface is

subjected to interface-parallel shear.

3.2. Least Squares Interpolation

Here we introduce an element-wise interpolation

scheme based on a least squares fitting of the particle

properties. Denoting the physical quantity by U xð Þ, we

will assume that U is sampled at n locations with spatial

coordinates x1. . .xn; y1. . .ynð Þ with values U1. . .Un. If

U xð Þ is approximated via a function ~U xð Þ, the squared

error �2 between ~U xð Þ and U xð Þ is given by:

�2 ¼
Xn

i¼1

~U x; yð Þ � Ui

� �2
: ð10Þ

The minimum of �2 can be found where r �2ð Þ ¼ 0.

Here we choose to use a linear function,

UðxÞ � ~U xð Þ ¼ c3 þ c1xþ c2y; ð11Þ

to approximate U xð Þ for two reasons: (1) the mixed

elements used in this study employ (at most) a linear

pressure shape function and (2) the least squares fitting

procedure for this order polynomial is relatively cheap

to implement. For a linear functionr �2ð Þ is defined via

2
Xn

i¼1

c1xi þ c2yi þ c3ð Þ � Ui½ � xi; yi; 1ð Þ ¼ 0; 0; 0ð Þ.

ð12Þ
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The coefficients c1, c2 and c3 can be obtained by

solving the following linear system of equationsPn
i x2

i

Pn
i¼1 xiyi

Pn
i¼1 xiPn

i¼1 xiyi

Pn
i¼1 y2

i

Pn
i¼1 yiPn

i¼1 xi

Pn
i¼1 yi

Pn
i¼1 1

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

c1

c2

c3

0
B@

1
CA

|fflfflffl{zfflfflffl}
c

¼

Pn
i¼1 UixiPn
i¼1 UiyiPn
i¼1 Ui

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
r

: ð13Þ

where we define A as the coefficient matrix, c as the

solution vector containing the coefficients of the fit-

ted function and r as the right hand side vector. In the

case when ~U is a linear function (where we would

have to invert a 3� 3 matrix), we can use Cramer’s

rule to obtain the solution vector c, thus, we have

where detðAÞ can be computed using the rule of

Sarrus, i.e.,

detðAÞ ¼ a11a22a33 þ 2a12a13a23 � a13
2a22 � a11a23

2

� a12
2a33. ð15Þ

The coefficients c1; c2; c3 are given by:

We define this interpolation scheme as ‘‘element-

wise’’ as we perform an independent least square fit

for g; q within each element, using only the particles

located within that element. Once the particles within

each element have been identified, the coefficients for

the element c1; c2; c3 can be directly computed using

(16). Using (11), the value of ~U at each quadrature

point within the element can be evaluated.

3.2.1 Over- and Under-shooting

If UðxÞ possesses a jump inside an element, the value

of ~U at both the quadrature points and the nodes

might be significantly larger or smaller than the

maximum or minimum value of the same physical

property on the particles. This over-shooting or

under-shooting is not desirable as it might have a

severe impact on the solution. In extreme cases, even

unphysical results are possible (e.g., negative viscos-

ities). In our implementation of the linear least

squares interpolation, we, therefore, check each

element for over-shooting and under-shooting by

inspecting the value of ~U at the nodes of each

element. We choose to use the nodal values as those

to represent the locations where over-shooting and

A�1r ¼ 1

detðAÞ

a22a33 � a23
2 a13a23 � a12a33 a12a23 � a13a22

a23a13 � a12a33 a11a33 � a13
2 a12a13 � a11a23

a12a23 � a13a22 a12a13 � a11a23 a11a22 � a12
2

0
B@

1
CA

r1

r2

r3

0
B@

1
CA; ð14Þ

c1 ¼
a22a33 � a23

2ð Þr1 þ a13a23 � a12a33ð Þr2 þ a12a23 � a13a22ð Þr3

a11a22a33 þ 2a12a13a23 � a13
2a22 � a11a2

23 � a12
2a33

;

c2 ¼
a23a13 � a12a33ð Þr1 þ a11a33 � a13

2ð Þr2 þ a12a13 � a11a23ð Þr3

a11a22a33 þ 2a12a13a23 � a13
2a22 � a11a23

2 � a12
2a33

;

c3 ¼
a12a23 � a13a22ð Þr1 þ a12a13 � a11a23ð Þr2 þ a11a22 � a12

2ð Þr3

a11a22a33 þ 2a12a13a23 � a13
2a22 � a11a23

2 � a12
2a33

:

ð16Þ
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under-shooting have the biggest effect. Additionally,

as we expect both the density and viscosity field to be

continuous, the values at the nodes should not exhibit

jumps that are too large. The nodal values that exhibit

smaller/larger values than the minimum/maximum

values stored on the particles are then set to the

respective minimum and maximum values. We then

compute the new coefficients of the linear regression

plane using the updated nodal values only. This

procedure is repeated until no nodal values are over-

shooting or under-shooting. The values at the quad-

rature points use the corrected coefficients. For better

convergence of this iterative algorithm, we slightly

relax the upper and lower limits and allow nodal

values to over-/under-shoot by 1 % of the respective

maximum/minimum value.

4. Test Cases

The scheme used to interpolate g or q should be

able to deal with several situations: (1) it should be

able to approximate a smoothly varying density and/

or viscosity field, and (2) it should be able to deal

with jumps in both fields. To compare the perfor-

mance of the different interpolation algorithms, we

conduct the same three benchmark tests as DURETZ

et al. (2011). The first test addresses buoyancy-dri-

ven flow in the presence of large but smooth

viscosity variations [see REVENAUGH and PARSONS

(1987), termed SolKz by DURETZ et al. (2011)]

whereas the second test employs a viscosity jump in

the middle of the domain [see (MORESI et al. 1996),

termed SolCx by DURETZ et al. (2011)]. The third

test consists of a weak matrix with a highly viscous

circular inclusion that is deformed in pure shear

(SCHMID 2003) (SolVI). In the first two cases, flow is

driven by an internal force, which—in the case of

geodynamic applications—can be interpreted as

arising due to buoyancy differences. Consequently,

we express the forcing term in those experiments in

terms of a density field q and a constant gravity

field. Here, gravity equals zero in the x-direction and

-1 in the y-direction.

4.1. Smooth Viscosity Variation in One Dimension

The analytical solution of REVENAUGH and PAR-

SONS (1987) allows us to investigate the accuracy of

our interpolation schemes for the case of smoothly

varying density and viscosity distributions. The

model domain is a box of height and width one with

free slip boundary conditions employed on all sides.

The variation of viscosity with depth is given by

g x; yð Þ ¼ exp 2Byð Þ; ð17Þ

where B is chosen in such a way that the viscosity

ratio between top and bottom equals 106. Density is

prescribed as

q x; yð Þ ¼ � sin 3pxð Þ cos 2yð Þ: ð18Þ

The viscosity and density fields are shown in Fig. 2

together with the resulting velocity, pressure and

stress fields. The C source code for this analytic

solution is available from the open source package

Underworld (MORESI et al. 2007).

4.2. SolCx: Viscosity Jump in One Dimension

The SolCx benchmark again consists of a 1 9 1

box with free slip boundaries on all sides. Contrary to

the SolKz benchmark, only the density distribution is

smoothly varying and the viscosity distribution is

characterized by a viscosity jump at xc ¼ 0:5 (see

Fig. 3). This test is somewhat harder than the SolKz

test, as the viscosity jump is very hard to capture

using any interpolation scheme. The complete deri-

vation of the analytical solution is described in ZHONG

(1996). The viscosity field employed in this study is

described by

g x; yð Þ ¼
1; if xc� 0:5

103; if xc [ 0:5

�
: ð19Þ

and the density via

q x; yð Þ ¼ sinðpyÞ cosðpxÞ. ð20Þ

The C source code for this analytic solution is

available from the open source package Underworld

(MORESI et al. 2007).

Discretization Errors in the Hybrid



4.3. SolVI: Viscosity Jump in Two Dimensions

In the third numerical experiment, flow is not

driven by buoyancy differences, but by kinematic

boundary conditions, which results in pure shear

deformation. The model consists of a weak matrix

with a strong circular inclusion (see Fig. 4). The

analytic solution for this setup was derived in (SCHMID

2003). In this study, the model domain is defined by

½�1; 1� � ½�1; 1�. The viscosity of the weak matrix

and the strong inclusion is given by

g x; yð Þ ¼ 1; if x2 þ y2 [ 0:1

103; if x2 þ y2� 0:1

�
: ð21Þ

Dirichlet boundary conditions are applied to both u; v

and are prescribed along the entire domain boundary

(their values being 1 and -1, respectively). Dirichlet

boundary velocities were computed using the ana-

lytical solution and chosen such that the system is

under compression. Matlab scripts to plot the ana-

lytical solution are available from http://e-collection.

library.ethz.ch/view/eth:25700.

4.4. Error Measures

In this study we measure the order of accuracy of

the primitive variables v and p. We report errors in

Figure 2
Density (q) and viscosity (g) of the SolKz benchmark as well as the analytically computed velocity (u, v) and pressure (p) fields

Figure 3
Velocity (u, v) and pressure (p) fields for the SolCx benchmark with chosen parameters (q, g) as described in the text
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both the L1 and the L2 norm. For a scalar quantity W,

the L1 norm is computed as

kWk1 ¼
Z
V

jWj dV , ð22Þ

and the L2 norm can be computed as:

kWk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
V

W2 dV

vuut ð23Þ

For a vector quantity k ¼ k1; k2ð Þ, the L1 norm reads

as:

kkk1 ¼
Z
V

jk1j þ jk2jð Þ dV ð24Þ

whereas the L2 norm is defined as:

kkk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
V

k2
1 þ k2

2

	 

dV

vuut : ð25Þ

To compute the respective norms in the case of our

numerical experiments, the integrals in the above

norms can be approximated by splitting them into

their element-wise contributions. The element vol-

ume integral can then be easily computed by

numerical integration using Gauss–Legendre quad-

rature. The respective L1 and L2 norms for pressure

can be evaluated via

kepk1 ¼
Xne

i

Xnq

q

jepðxqÞjwq detJq ð26Þ

kepk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXne

i

Xnq

q

jepðxqÞj2 wq detJq

vuut ; ð27Þ

where epðxqÞ ¼ pðxqÞ � panalyticðxqÞ is the pressure

error evaluated at the qth quadrature associated with

the ith element. ne; nq refer to the number of elements

and the number of quadrature points per element.

wq; Jq are the quadrature weight of the Jacobian

associated with point q. The velocity error ev is

evaluated using the following two norms

kevk1 ¼
Xne

i

Xnq

q

h
jeuðxqÞj þ jevðxqÞj

i
wq detJq;

ð28Þ

kevk2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXne

i

Xnq

q

h
jeuðxqÞj2 þ jevðxqÞj2

i
wq detJq

vuut :

ð29Þ

Analogous to the pressure error, the velocity errors

are computed as euðxqÞ ¼ uðxqÞ � uanalyticðxqÞ and

evðxqÞ ¼ vðxqÞ � vanalyticðxqÞ.
We compute the different error norms for ep and

ev for a set of numerical experiments with varying

resolution h. We expect the error norms to follow the

following relationships:

Figure 4
Velocity (u, v) and pressure (p) fields for the SolVI benchmark with chosen parameters (q, g) as described in the text
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kevk1 ¼ Chrv kevk2 ¼ Chr0v ; ð30Þ

kepk1 ¼ Chrp kepk2 ¼ Chr0p ; ð31Þ

where C is a resolution-independent constant and

rp; r
0
p and rv; r0v are the convergence rates for pres-

sure and velocity and, respectively. Using linear

regression on the logarithm of the respective error

norm and the resolution, we compute the conver-

gence rates of the numerical solutions.

For Q1P0 and Q2P�1 elements, the theoretical

lower bound for r0v is 2 and 3, respectively, and for

r0p is 1 and 2 (ELMAN et al. 2005). We note that when

using discontinuous pressure space (e.g., P0, P�1),

these bounds remain valid even when the viscosity is

discontinuous provided that the element boundaries

conform to the discontinuity.

5. Convergence of Numerical Solutions

For each of the tests mentioned above, we ran a

set of numerical experiments using MILAMIN_VEP.

We numerically measure the convergence rate of the

FE-PIC solution for both Q1P0 and Q2P�1 elements

using a sequence of different mesh resolutions and

particle resolutions. Four different techniques to

prescribe quadrature point properties were compared:

direct computation of material properties to the

quadrature points based on their global coordinates,

arithmetic, harmonic and linear least squares inter-

polation. In the case of harmonic interpolation, only

viscosity was interpolated using harmonic averaging,

whereas density was interpolated using the arithmetic

mean.

As the accuracy of finite element solutions

strongly depends on if element boundaries are

aligned with jumps in material properties (e.g.,

DEUBELBEISS and KAUS 2008; KRONBICHLER et al.

2012; MORESI et al. 1996), we also investigate the

convergence behaviour of two different sets of

meshes: meshes with an even number of elements

(subsequently called even meshes) and meshes with

an odd number of elements (subsequently called odd

meshes). In our setups, even meshes will align with

viscosity jumps (in the case of the SolCx bench-

mark). In SolKz, this alignment is not as important,

as properties are smoothly varying. In SolVI vis-

cosity jumps occur regardless of the mesh type.

However, we also report the results from those

experiments for completeness. A sequence of

meshes with an equal number of elements (ne) in x

and y was used. For Q1P0 (even) we used ne ¼
M �M; where M ¼ 32 � 2d with d = [0, 5] and for

Q2P�1 (even), we used M ¼ 16 � 2d with d= [0,5].

Odd meshes were defined by M / 2d þ 1. The

number of particles per element was chosen to be

either 4 9 4 or 16 9 16. Particles were distributed

uniformly within the element interior.

5.1. SolKz

The SolKz benchmark represents an idealized

setup with a large, but smoothly varying viscosity

contrast. In geodynamics, such a case may be found

in convection studies with a stagnant lid, where no

sharp changes in viscosity occur. The spatial distri-

bution of absolute errors (computed at the quadrature

points) for v and p is shown in Fig. 5 for arithmetic

and linear least squares interpolation. In both cases,

the error is negligible compared to the absolute value

of the variable (see Fig. 2). However, in the case of

linear least squares interpolation, the error is approx-

imately ten times smaller. Note that the error is not

plotted as an element average, but at each quadrature

point. For this reason, we observe error fluctuations

inside each element resulting from the interpolation

method. The observed error oscillations are, there-

fore, not numerical artefacts (we will shortly discuss

this issue later).

In Fig. 6 we show kevk2 and kepk2 for a number

of grid resolutions, averaging methods and particle

resolutions. In the case of Q2P�1 the expected upper

bound on the order of accuracy is expected to be

O h3ð Þ for kevk2 and O h2ð Þ for kepk2. This order of

accuracy is only reached when directly prescribing

the material properties on the quadrature points

(‘‘direct’’). When using the linear least squares

interpolation, we obtain the same order of accuracy

for kepk2, however, the order of accuracy of kevk2

decreases to values that are slightly higher than 2. All

other interpolation methods yield values of 2 and 1

for kevk2 and kepk2. For Q1P0, we obtain the optimal

order of accuracy independent of the interpolation

M. Thielmann et al. Pure Appl. Geophys.



method used. As both density and viscosity fields are

smoothly varying, the results don’t differ for even or

odd meshes (Table 1).

Similar to the order of accuracy, the accuracy of

the numerical solution in terms of kevk2 is nearly

unaffected by the used interpolation method (see Fig.

6). Arithmetic interpolation performs worst, followed

by harmonic and linear least squares interpolation.

Direct prescription yields the most accurate results.

The number of particles per cell only slightly (if at

all) influences the accuracy, its effect being the

largest in the case of linear least squares interpola-

tion, where accuracy is close to the direct method.

The accuracy of kepk2 is the same for all methods.

Note that the pressure error is several orders of

magnitude larger than the velocity error. For Q2P�1

elements, the effect of different interpolation methods

on the accuracy of kevk2 is obvious (see Fig. 6).

Arithmetic interpolation clearly performs worst, with

harmonic interpolation producing the second worst

results. Both interpolation methods are largely unaf-

fected by the number of particles per element. Least

squares interpolation performs much better in the

case of a large number of particles per element. If the

number of particles per element is small, the accuracy

of linear least squares interpolation is comparable to

harmonic interpolation. Its advantage can be clearly

seen in kepk2, where its accuracy is equal to the direct

method (independent of the number of particles per

cell). The accuracy of arithmetic and harmonic

interpolation is the same in this case and errors are

at least an order of magnitude higher than for the

other two interpolation methods.

5.2. SolCx with Dg ¼ 103

We use SolCx to study the effect of different

interpolation methods on the accuracy and conver-

gence rate for the case of a one-dimensional viscosity

jump. In Fig. 7, we plot the absolute errors of v and p.

Figure 5
Spatial distribution of absolute errors for u, v and p for SolKz. Q2P�1 elements are used with a nodal resolution of 101 9 101 nodes. Material

properties at the quadrature points were prescribed using a linear least squares interpolation of 16 9 16 particles. The top row shows the

results for arithmetic interpolation, the bottom row shows the results for linear least squares interpolation. Note that the absolute errors are an

order of magnitude smaller in the case of linear least squares interpolation
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The upper row shows the absolute errors for an even

mesh (element boundaries are aligned with the

viscosity jump), whereas the lower row show the

errors for an odd mesh (the viscosity jump occurs

inside an element). Resolution is 101�101 nodes for

the case of the even mesh and 103�103 nodes for the

case of the odd mesh (As the Q2P�1 element consists

of three nodes in each direction, the number of nodes

is always odd. The number of nodes used in this

example corresponds to 50� 50 or 51� 51 elements,

respectively). In this example, Q2P1 elements were

employed together with linear least squares interpo-

lation using 16 9 16 regularly distributed particles.

When element boundaries are aligned with the

viscosity jump, errors are very low and negligible

compared to the value of v and p (see Fig. 3).

However, when the mesh is not aligned with the

viscosity jump, errors increase significantly (by a

factor of 100–1000). This has also been found in

numerous other studies (KRONBICHLER et al. 2012;

MORESI et al. 1996).

In Figs. 5 and 7, we plotted the spatially varying

errors for the SolKz and SolCx benchmarks. In

almost all error plots, we could observe a somewhat

patchy spatial distribution of the errors, in particular

when the overall error was small. As previously

stated, the error oscillations stem from the fact that

the error is varying inside the element. q and g are (at

best) approximated with a linear function; therefore,

the interpolation error in both values varies through-

out the element. The error in u, v and p is a result of

this interpolation error. In Fig. 8, we show a zoomed

(a)

(b)

Figure 6
Velocity and pressure L2 error norms vs. increasing resolution for the SolKz benchmark. Line colors refer to the corresponding interpolation

method, with solid lines indicating the results for a small number of particles per cell (4 9 4) and dashed lines indicating the results for a large

number of particles per cell (16 9 16). The slopes of the fitted lines can be found in Table 1
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in part (at the viscosity jump) of the different error

fields of the SolCx benchmark, where we also

indicate element nodes, quadrature points and bound-

aries. The element-wise variability of the error fields

can be clearly seen. Errors are generally smallest at

the center node and increase towards the element

boundaries. Interestingly, the error fields of both jeuj
and jevj have their maxima inside the element and not

at the element boundaries.

In Fig. 9, we show kevk2 and kepk2 for the SolCx

becnhmark. Colors indicate the interpolation type,

solid lines denote averaging methods using 4�4

particles per element, dashed lines denote 16�16

particles per element. Results are shown for an odd

mesh. When Q1P0 elements are used, the order of

accuracy is the same for all interpolation methods

(see Table 2). Direct, arithmetic and linear least

squares interpolation all yield the same accuracy and

convergence rate. Harmonic interpolation results in

smaller values of kevk2 and larger values of kepk2,

however, accuracies only vary marginally. In the case

of Q2P�1 elements, the spread in accuracies is

slightly larger. Arithmetic and linear least squares

interpolation yield the same accuracy and conver-

gence rate in kevk2. Harmonic and direct

interpolation also yield the same convergence rate,

with direct interpolation being most accurate. This

picture is reversed for kepk2, where direct interpola-

tion yields a higher convergence rate but less

accuracy. The other interpolation methods have the

same order of accuracy, with linear least squares

interpolation being most accurate, followed by arith-

metic and harmonic interpolation.

In Table 2, we show the order of accuracy for

different meshes, elements and interpolation meth-

ods. When an even mesh with Q1P0 elements is used,

kevk1 and kepk1 converge with Oðh2Þ and OðhÞ for

all interpolation methods, kevk2 and kepk2 converge

with Oðh2Þ and Oðh2=3Þ. Interestingly, the order of

accuracy does not significantly depend on the used

interpolation method. This is different for Q2P�1

elements. For an odd mesh, L1 norms show the same

order of accuracy regardless of the used interpolation

scheme. For an even mesh, however, kevk2 and kepk2

converge with Oðh3Þ and Oðh2Þ, respectively. While

the order of accuracy is reduced to two for arithmetic

and harmonic interpolation, it remains larger for

linear least squares interpolation. A dense particle

distribution increases the convergence rate. This

behaviour was already seen in the SolKz benchmark.

Table 1

Orders of accuracy of the L1 and L2 error norms between analytical and numerical solution of the SolKz benchmark for different kinds of

resolutions, elements and interpolation methods

Q1P0, even mesh Q1P0, odd mesh

rv rp r0v r0p rv rp r0v r0p

Direct 2.00 1.00 1.99 1.01 2.00 1.00 1.99 1.01

Arithmetic (4 9 4) 2.00 1.01 1.99 1.01 2.00 1.01 1.99 1.01

Arithmetic (16 9 16) 2.00 1.01 1.99 1.01 2.00 1.01 1.99 1.01

Harmonic (4 9 4) 2.00 1.01 1.99 1.01 2.00 1.01 1.99 1.01

Harmonic (16 9 16) 2.00 1.01 1.99 1.01 2.00 1.01 1.99 1.01

Linear least Squares (4 9 4) 2.00 1.01 1.99 1.01 2.00 1.00 1.99 1.01

Linear least Squares (16 9 16) 2.00 1.00 1.99 1.01 2.00 1.00 1.99 1.01

Q2P�1, even mesh Q2P�1, odd mesh

rv rp r0v r0p rv rp r0v r0p

Direct 3.05 2.00 2.98 1.99 3.05 2.00 2.98 1.99

Arithmetic (4 9 4) 1.98 1.00 1.98 0.98 1.98 1.00 1.99 0.98

Arithmetic (16 9 16) 1.99 1.00 1.99 0.98 1.99 1.00 1.99 0.98

Harmonic (4 9 4) 1.99 1.02 2.00 0.98 1.99 1.02 2.00 0.99

Harmonic (16 9 16) 1.99 1.02 2.00 0.98 1.99 1.02 2.00 0.99

Linear least Squares (4 9 4) 2.00 2.00 2.03 1.98 2.00 2.00 2.02 1.99

Linear least Squares (16 9 16) 2.09 2.00 2.21 1.98 2.09 2.00 2.20 1.99
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The order of accuracy of the L2 error norms is

significantly decreased when an odd mesh is used.

The order of accuracy is below 1 kevk2 for all

interpolation methods, with arithmetic and linear

least squares interpolation resulting in slightly higher

convergence rates. Most important, convergence rates

are on the same order as for Q1P0 elements. The same

is true for the convergence rate of kepk2, which is

reduced to Oðh1=2Þ, which is consistent with the

findings of KRONBICHLER et al. (2012).

Figure 7
Spatial distribution of absolute errors for u, v and p for SolCx with a viscosity contrast of Dg ¼ 103. Q2P�1 elements are used with a nodal

resolution of 101�101 nodes. Material properties at the quadrature points were prescribed using linear least squares interpolation of 16�16

particles. The top row shows the errors for an even mesh, the bottom row shows the errors for an odd mesh. Absolute errors significantly

increase when an odd mesh is used with the pressure error being largest at the location of the jump

(a) (b) (c)

Figure 8
Zoom on the elementwise varying error field in the SolCx benchmark for a Q2P�1 element (even mesh). White lines indicate element

boundaries, white circles nodes and white crosses quadrature points. Material parameters were interpolated using linear least squares

interpolation
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5.3. SolVI

Of the three benchmarks used in this study, the

SolVI benchmark is the most challenging one, as the

viscosity jump occurs on a circular interface which

cannot be captured with a structured mesh. Unlike the

two other benchmarks, deformation is not driven by

density differences, but by kinematic boundary

conditions, the accuracy of the solution is, therefore,

only dependent on the way in which we interpolate

viscosity. In Fig. 10, we show the distribution of the

absolute error in v and p. In this example, Q2P�1

elements are used with a nodal resolution of 201�201

nodes. Material properties are interpolated using

linear least squares interpolation from 16 9 16

particles. As expected, errors are highest around the

inclusion. The pressure oscillations at the inclusion

interface and their relation to employed material

parameters have been described in detail by DEU-

BELBEISS and KAUS (2008).

In Fig. 11, we show the L2 norms of ev and ep

versus nodal spacing. For both element types,

harmonic averaging performs best, its accuracy being

largely independent of the number of particles per

cell. Direct interpolation results in lower values of

kevk2, but higher values of kepk2. Arithmetic and

linear least squares interpolation perform equally

well (or less well). The accuracy of the solution is not

affected by the choice of the element.

In Table 3, we report the convergence rates for

different mesh types, element types and interpolation

schemes. As viscosity jumps occur inside an element

regardless of the mesh type used, convergence rates

(b)

(a)

Figure 9
Velocity and pressure L2 error norms vs. increasing resolution for the SolCx benchmark. Line colors refer to the corresponding interpolation

method, with solid lines indicating the results for low number of particles per element (4 9 4) and dashed lines indicating the results for a

large number of particles per element (16 9 16). The slopes of the fitted lines can be found in Table 2
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Table 2

Orders of accuracy of the L1 and L2 error norms between analytical and numerical solution of the SolCx with a viscosity jump of Dg ¼ 103 for

different kinds of resolutions, elements and interpolation methods

Q1P0, even mesh Q1P0, odd mesh

rv rp r0v r0p rv rp r0v r0p

Direct 2.00 0.99 2.00 0.61 1.00 0.97 1.00 0.56

Arithmetic (4 9 4) 2.00 0.99 2.00 0.61 1.01 0.97 1.00 0.56

Arithmetic (16 9 16) 2.00 0.99 2.00 0.61 1.01 0.97 1.00 0.56

Harmonic (4 9 4) 2.00 0.99 2.00 0.61 0.99 0.97 0.98 0.54

Harmonic (16 9 16) 2.00 0.99 2.00 0.61 0.98 0.97 0.97 0.54

Linear least squares (4 9 4) 2.01 0.99 2.01 0.61 1.00 0.97 1.00 0.56

Linear least squares (16 9 16) 2.01 0.99 2.01 0.61 1.00 0.97 1.00 0.56

Q2P�1, even mesh Q2P�1, odd mesh

rv rp r0v r0p rv rp r0v r0p

direct 2.34 1.88 2.47 1.88 0.90 1.51 0.89 1.05

Arithmetic (4 9 4) 2.01 1.93 2.00 1.95 0.98 0.94 0.98 0.51

Arithmetic (16 9 16) 2.01 1.93 2.01 1.94 0.97 0.94 0.97 0.51

Harmonic (4 9 4) 2.00 1.93 2.00 1.93 0.91 0.94 0.91 0.51

Harmonic (16 9 16) 2.01 1.92 2.00 1.92 0.90 0.95 0.91 0.51

Linear least Squares (4 9 4) 2.19 1.86 2.21 1.87 0.97 0.96 0.97 0.54

Linear least squares (16 9 16) 2.51 1.88 2.52 1.88 0.97 0.96 0.97 0.54

Figure 10
Spatial distribution of absolute errors for u, v and p for SolVI with a viscosity contrast of Dg ¼ 103. Q2P�1 elements are used with a nodal

resolution of 201 9 201 nodes. Material properties at the quadrature points were prescribed using linear least squares interpolation of 16 9 16

particles. The top row shows the errors in the whole domain, the bottom row shows the errors in a zoomed in region. The pressure oscillations

at the inclusion interface can be clearly seen
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do not differ significantly for even or odd meshes.

Convergence rates of kevk1 and kepk1 are not

significantly affected by the used element type and

are both of OðhÞ. The convergence rate of kevk2 is

also of OðhÞ, with arithmetic and linear least squares

interpolation having the largest convergence rates.

The convergence rates for kepk2 range between 1
2

and
3
4
. Again, the largest convergence rates are obtained

when using arithmetic or linear least squares

interpolation.

As described in (MACKINNON and CAREY 1987), the

cause for the loss of accuracy when inter-element

jumps are introduced is simply because the interpo-

lants used for velocity and pressure do not permit

inter-element jumps to be represented. Thus, whilst

PIC type methods permit large deformation processes

to be modeled, using non-body fitted finite elements

will naturally result in low order accuracy methods.

In order to increase the order of accuracy, the

interpolants within the those element containing

jumps in viscosity must be modified such that jumps

in strain-rate and pressure can be described. To

maintain the benefits, we sought by using the FE-PIC

approach, one could consider employ methods which

only locally modify the basis functions with supports,

which intersect the viscosity jumps such as; XFEM

(BELYTSCHKO et al. 2001; FRIES 2009; FRIES and

BELYTSCHKO 2010; LEGRAIN et al. 2008; SUSSMAN and

FATEMI 1999; ZLOTNIK and DÌEZ 2009) immersed

interface method (LI and ITO 2006), partition of unity

and multi-scale enrichment methods (ALBERS 2012;

CHESSA et al. 2003; DOLBOW and DEVAN 2004;

(a)

(b)

Figure 11
Velocity and pressure L2 error norms vs. increasing resolution for the SolVI benchmark. Line colors refer to the corresponding interpolation

method, with solid lines indicating the results for a small number of particles per cell (4�4) and dashed lines indicating the results for a large

number of particles per cell (16 9 16). The slopes of the fitted lines can be found in Table 3

Discretization Errors in the Hybrid



DOLBOW et al. 2000; FISH and YUAN 2005; MOURAD

et al. 2007). We hope that in the near future, such

methods development in the engineering community

which are specifically designed to capture sub-

element constitutive behaviour will be examined in

the context of geodynamic applications.

By noting that the loss of accuracy can be

attributed to the inability to represent discontinuous

pressure and strain rate fields within an element, we

conclude that all hybrid FE-PIC methods will exhibit

similar characteristics to the results we have pre-

sented here. MORESI et al. (2003) used the particle

locations as the quadrature points and computed the

respective weights using Voronoi diagrams. We

remark that this approach is elegant in that it

eliminates the need to construct an interpolant to

project material properties onto quadrature points,

nevertheless, the underlying loss of order of accuracy

we document here will still be present in this type of

‘‘interpolate free’’ PIC method.

In contrast to the moving integration point method

of MORESI et al. (2003), our approach is easily

extensible to higher order elements as the task of

constructing an approximate representation of the

material properties is independent of the quadrature

scheme used to evaluate the weak form. Furthermore,

the least squares projection approach described here

is cheaper to construct as it avoids the need to

compute an approximate Voronoi diagram.

In contrast to the discontinuous viscosity case, if

the viscosity (and density) fields are smoothly

varying (as in the SolKz benchmark), the conver-

gence and accuracy are significantly improved using

the new least square interpolation scheme presented

here. Smoothly varying viscosity and density fields

are commonly encountered in mantle convection

models where viscosity and density are temperature

dependent and pressure dependent. For such model-

ing scenarios, the presented interpolation method

combined with a higher order element yields more

accurate results for lower resolutions. The additional

effort to perform a slightly more sophisticated

interpolation from the particles to the quadrature

points pays off in this case.

6. Conclusions

In this study, we investigated the discretization

errors and the convergence properties of the hybrid

Table 3

Orders of accuracy of the L1 and L2 error norms between analytical and numerical solution of the SolVI with a viscosity jump of Dy ¼ 103 for

different kinds of resolutions, elements and interpolation methods

Q1P0, even mesh Q1P0, odd mesh

rv rp r0v r0p rv rp r0v r0p

Direct 1.02 0.97 1.01 0.60 1.03 0.93 1.02 0.55

Arithmetic (4 9 4) 1.04 0.96 1.02 0.65 1.00 0.96 0.99 0.67

Arithmetic (16 9 16) 1.02 0.95 1.01 0.64 1.01 0.97 1.00 0.67

Harmonic (4 9 4) 0.94 0.83 0.93 0.47 0.90 0.84 0.89 0.52

Harmonic (16 9 16) 0.95 0.85 0.94 0.47 0.94 0.87 0.93 0.53

Linear least squares (4 9 4) 1.04 0.95 1.02 0.66 1.00 0.96 0.99 0.67

Linear least squares (16 9 16) 1.03 0.95 1.01 0.64 1.01 0.97 1.00 0.68

Q2P�1, even mesh Q2P�1, odd mesh

rv rp r0v r0p rv rp r0v r0p

Direct 1.02 0.86 1.01 0.41 0.98 0.91 0.97 0.50

Arithmetic (4 9 4) 1.06 1.04 1.03 0.69 1.06 1.04 1.03 0.68

Arithmetic (16 9 16) 1.06 1.04 1.03 0.69 1.06 1.04 1.03 0.68

Harmonic (4 9 4) 0.89 0.83 0.87 0.50 0.89 0.84 0.87 0.53

Harmonic (16 9 16) 0.87 0.83 0.85 0.50 0.88 0.85 0.86 0.53

Linear least squares (4 9 4) 1.06 1.03 1.03 0.69 1.06 1.03 1.03 0.68

Linear least squares (16 9 16) 1.06 1.04 1.03 0.68 1.06 1.03 1.03 0.69
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FE-PIC (finite element particle-in-cell) method. We

introduced a new interpolation scheme, which is

relatively cheap and that takes into account the var-

iation of material properties throughout the element.

The analysis was carried out by comparing analytical

and numerical solutions of three idealized model

setups. The different model setups test the ability of

an interpolation scheme to deal with either smoothly

varying, one-dimensional discontinuous and two-

dimensional discontinuous viscosity fields. We tested

three different interpolation schemes: arithmetic,

harmonic and linear least squares interpolation toge-

ther with two different element types: Q1P0 and

Q2P�1. We find that in the case of smoothly varying

viscosities, the linear least squares interpolation

together with the Q2P�1 element results in optimal

convergence and high accuracy. This type of

numerical scheme is, therefore, optimal for mantle-

lithosphere simulations with continuously varying

viscosity fields.

In conclusion, the additional cost of using linear

least squares interpolation together with a high-order

element does not pay off when the viscosity field

exhibits sharp changes. Therefore, a linear element

would be sufficient for those purposes. However, it is

known that low-order elements can sometimes exhi-

bit numerical artefacts in incompressible problems,

where velocities are significantly underestimated

[also known as ’locking’, see, e.g., POPOV and SOBO-

LEV (2008)]. Furthermore, low order elements are not

very accurate [see the results for Q1P0 in this study

and the discussion in KRONBICHLER et al. (2012)] and,

in particular, Q1P0-elements are known to sometimes

show some kind of checkerboard pattern in the

pressure field (BATHE 1982), which requires some

kind of smoothing of the pressure field (e.g., BRAUN

et al. 2008). More work is required to obtain a stable

and accurate low order (linear) element for Stokes

flow problems.
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